Skip to main content

Utility functions to write LivingPark notebooks.

Project description

LivingPark utils

A collection of utility functions to write LivingPark notebooks.

Usage examples:

import livingpark_utils
from livingpark_utils import download
from livingpark_utils.clinical import moca2mmse
from livingpark_utils.dataset import ppmi

utils = livingpark_utils.LivingParkUtils()
downloader = download.ppmi.Downloader(utils.study_files_dir)

utils.notebook_init()
utils.get_study_files(["Demographics.csv"], default=downloader)
utils.get_T1_nifti_files(
    cohort, default=downloader
)  # `cohort` is of type: pd.DataFrame

ppmi.find_nifti_file_in_cache(x["PATNO"], x["EVENT_ID"], x["Description"])
ppmi.disease_duration()

moca2mmse(2)

Exclude subjects from a cohort without leaking patient information.

from livingpark_utils.ignore import (
    insert_hash,
    remove_ignored,
)

# Assuming a cohort definition defined as `cohort`.
cohort = insert_hash(cohort, columns=["PATNO", "EVENT_ID", "Description"])
remove_ignored(cohort, ignore_file=".ppmiignore")

Usage to execute utility notebooks:

from livingpark_utils.scripts import run

run.mri_metadata()
run.pd_status()

Note: Optionally use the %%capture cell magic to further hide notebook outputs.

CLI commands

Download T1 nifti files using a cohort definition file.

$ get_T1_nifti_files <cohort_file> --downloader (ppmi) [--symlink=<bool>]
[--force=<bool>] [--timeout=<int>]

The cohort_file is a csv file created beforehand. Respectively to the chosen downloader, it must have the following columns:

  • PPMI: PATNO, EVENT_ID, and Description.

Troubleshooting

Permission issues on Windows

We use symbolic links when creating the folder for cached data. Unfortunately, by default, Windows does not authorize users to create symbolic links. To fix this issue on your machine, please follow the guide from this blog post.

Contributing guidelines

We welcome contributions of any kind in the form of Pull-Request to this repository. See also LivingPark contributing guidelines.

Make sure to:

  • Use Python type annotations
  • Include Python docstrings using numpydoc format for all functions
  • Format docstrings
  • Run psf/black on the files you modify
  • Run pre-commit run --all before committing, this will be checked in your PR

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

livingpark_utils-0.9.4.tar.gz (55.4 kB view details)

Uploaded Source

Built Distribution

livingpark_utils-0.9.4-py3-none-any.whl (69.0 kB view details)

Uploaded Python 3

File details

Details for the file livingpark_utils-0.9.4.tar.gz.

File metadata

  • Download URL: livingpark_utils-0.9.4.tar.gz
  • Upload date:
  • Size: 55.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.18

File hashes

Hashes for livingpark_utils-0.9.4.tar.gz
Algorithm Hash digest
SHA256 3bce0db86657bf099c4dee43f023e15add6a720fa7c2721699feab00b98969a0
MD5 275c98f9047287bfb8fc3e9379a91314
BLAKE2b-256 44dd9a0b7db463bafe199a5292012e0d7a093b2b147a3f67865ff41a4614aa80

See more details on using hashes here.

Provenance

File details

Details for the file livingpark_utils-0.9.4-py3-none-any.whl.

File metadata

File hashes

Hashes for livingpark_utils-0.9.4-py3-none-any.whl
Algorithm Hash digest
SHA256 acaa7585e29b3e87d03c79c0a94ceb4bd3195d8afa6a4702abe6dd806e9765e3
MD5 c8223cdc131427c947c96cc24a704f55
BLAKE2b-256 905f67d3371e8c768b8799277f12bb6da05da394bfd32b510a6f1a2db65843e2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page