Skip to main content

A robust implementation of concurrent.futures.ProcessPoolExecutor

Project description

Loky logo

Reusable Process Pool Executor

Build Status Documentation Status codecov

Goal

The aim of this project is to provide a robust, cross-platform and cross-version implementation of the ProcessPoolExecutor class of concurrent.futures. It notably features:

  • Consistent and robust spawn behavior: All processes are started using fork + exec on POSIX systems. This ensures safer interactions with third party libraries. On the contrary, multiprocessing.Pool uses fork without exec by default, causing third party runtimes to crash (e.g. OpenMP, macOS Accelerate...).

  • Reusable executor: strategy to avoid re-spawning a complete executor every time. A singleton executor instance can be reused (and dynamically resized if necessary) across consecutive calls to limit spawning and shutdown overhead. The worker processes can be shutdown automatically after a configurable idling timeout to free system resources.

  • Transparent cloudpickle integration: to call interactively defined functions and lambda expressions in parallel. It is also possible to register a custom pickler implementation to handle inter-process communications.

  • No need for if __name__ == "__main__": in scripts: thanks to the use of cloudpickle to call functions defined in the __main__ module, it is not required to protect the code calling parallel functions under Windows.

  • Deadlock free implementation: one of the major concern in standard multiprocessing and concurrent.futures modules is the ability of the Pool/Executor to handle crashes of worker processes. This library intends to fix those possible deadlocks and send back meaningful errors. Note that the implementation of concurrent.futures.ProcessPoolExecutor that comes with Python 3.7+ is as robust as the executor from loky but the later also works for older versions of Python.

Installation

The recommended way to install loky is with pip,

pip install loky

loky can also be installed from sources using

git clone https://github.com/joblib/loky
cd loky
python setup.py install

Note that loky has an optional dependency on psutil to allow early memory leak detections.

Usage

The basic usage of loky relies on the get_reusable_executor, which internally manages a custom ProcessPoolExecutor object, which is reused or re-spawned depending on the context.

import os
from time import sleep
from loky import get_reusable_executor


def say_hello(k):
    pid = os.getpid()
    print("Hello from {} with arg {}".format(pid, k))
    sleep(.01)
    return pid


# Create an executor with 4 worker processes, that will
# automatically shutdown after idling for 2s
executor = get_reusable_executor(max_workers=4, timeout=2)

res = executor.submit(say_hello, 1)
print("Got results:", res.result())

results = executor.map(say_hello, range(50))
n_workers = len(set(results))
print("Number of used processes:", n_workers)
assert n_workers == 4

For more advance usage, see our documentation

Workflow to contribute

To contribute to loky, first create an account on github. Once this is done, fork the loky repository to have your own repository, clone it using 'git clone' on the computers where you want to work. Make your changes in your clone, push them to your github account, test them on several computers, and when you are happy with them, send a pull request to the main repository.

Running the test suite

To run the test suite, you need the pytest (version >= 3) and psutil modules. From the root of the project, run the test suite using:

    pip install -e .
    pytest .

Why was the project named loky?

While developping loky, we had some bad experiences trying to debug deadlocks when using multiprocessing.Pool and concurrent.futures.ProcessPoolExecutor, especially when calling functions with non-picklable arguments or returned values at the beginning of the project. When we had to chose a name, we had dealt with so many deadlocks that we wanted some kind of invocation to repel them! Hence loky: a mix of a god, locks and the y that make it somehow cooler and nicer : (and also less likely to result in name conflict in google results ^^).

Fixes to avoid those deadlocks in concurrent.futures were also contributed upstream in Python 3.7+, as a less mystical way to repel the deadlocks :D

Acknowledgement

This work is supported by the Center for Data Science, funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

loky-3.0.0.tar.gz (108.0 kB view details)

Uploaded Source

Built Distribution

loky-3.0.0-py2.py3-none-any.whl (69.2 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file loky-3.0.0.tar.gz.

File metadata

  • Download URL: loky-3.0.0.tar.gz
  • Upload date:
  • Size: 108.0 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for loky-3.0.0.tar.gz
Algorithm Hash digest
SHA256 fd8750b24b283a579bafaf0631d114aa4487c682aef6fce01fa3635336297fdf
MD5 1fec4c0696ff9e5825f662430f2bdd75
BLAKE2b-256 2a83fd57bc6b51d7cb81cc21f8f6cde5174b9436d42d53b2cfb8993d4e006faf

See more details on using hashes here.

Provenance

File details

Details for the file loky-3.0.0-py2.py3-none-any.whl.

File metadata

  • Download URL: loky-3.0.0-py2.py3-none-any.whl
  • Upload date:
  • Size: 69.2 kB
  • Tags: Python 2, Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/0.0.0 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.9.7

File hashes

Hashes for loky-3.0.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 1d5a4d778c7ff09c919aa3fbf2d879a2c7ac936a545c615af40e080a1c902b82
MD5 bf28365ca5a9f7d74f9306fcf585b7ba
BLAKE2b-256 db7313772f1402197d40b69884af8607d913b73b5b90bda6e634c9319007ed59

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page