Skip to main content

A Python implementation of Lunr.js

Project description

Build Status codecov Supported Python Versions PyPI Read the Docs Downloads

Lunr.py

A Python implementation of Lunr.js by Oliver Nightingale.

A bit like Solr, but much smaller and not as bright.

This Python version of Lunr.js aims to bring the simple and powerful full text search capabilities into Python guaranteeing results as close as the original implementation as possible.

What does this even do?

Lunr is a simple full text search solution for situations where deploying a full scale solution like Elasticsearch isn't possible, viable or you're simply prototyping. Lunr parses a set of documents and creates an inverted index for quick full text searches in the same way other more complicated solution.

The trade-off is that Lunr keeps the inverted index in memory and requires you to recreate or read the index at the start of your application.

Interoperability with Lunr.js

A core objective of Lunr.py is to provide interoperability with the JavaScript version.

An example can be found in the MkDocs documentation library. MkDocs produces a set of documents from the pages of the documentation and uses Lunr.js in the frontend to power its built-in searching engine. This set of documents is in the form of a JSON file which needs to be fetched and parsed by Lunr.js to create the inverted index at startup of your application.

While this is not a problem for most sites, depending on the size of your document set, this can take some time.

Lunr.py provides a backend solution, allowing you to parse the documents in Python of time and create a serialized Lunr.js index you can pass have the browser version read, minimizing start up time of your application.

Each version of lunr.py targets a specific version of lunr.js and produces the same results for a non-trivial corpus of documents.

Installation

pip install lunr

An optional and experimental support for other languages thanks to the Natural Language Toolkit stemmers is also available via pip install lunr[languages]. The usage of the language feature is subject to NTLK corpus licensing clauses.

Please refer to the documentation page on languages for more information.

Usage

First, you'll need a list of dicts representing the documents you want to search on. These documents must have a unique field which will serve as a reference and a series of fields you'd like to search on.

Lunr provides a convenience lunr function to quickly index this set of documents:

>>> from lunr import lunr
>>>
>>> documents = [{
...     'id': 'a',
...     'title': 'Mr. Green kills Colonel Mustard',
...     'body': 'Mr. Green killed Colonel Mustard in the study with the candlestick.',
... }, {
...     'id': 'b',
...     'title': 'Plumb waters plant',
...     'body': 'Professor Plumb has a green plant in his study',
... }]
>>> idx = lunr(
...     ref='id', fields=('title', 'body'), documents=documents
... )
>>> idx.search('kill')
[{'ref': 'a', 'score': 0.6931722372559913, 'match_data': <MatchData "kill">}]
>>> idx.search('study')
[{'ref': 'b', 'score': 0.23576799568081389, 'match_data': <MatchData "studi">}, {'ref': 'a', 'score': 0.2236629211724517, 'match_data': <MatchData "studi">}]

Please refer to the documentation for more usage examples.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

lunr-0.7.0.post1.tar.gz (1.1 MB view details)

Uploaded Source

Built Distribution

lunr-0.7.0.post1-py3-none-any.whl (35.2 kB view details)

Uploaded Python 3

File details

Details for the file lunr-0.7.0.post1.tar.gz.

File metadata

  • Download URL: lunr-0.7.0.post1.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for lunr-0.7.0.post1.tar.gz
Algorithm Hash digest
SHA256 00fc98f59b53c7ee0f6384c99e6c099f28cb746ecfff865bbc3705c3e9104bda
MD5 bc1449d0bd8e92c4c2ee688d20ff5e5f
BLAKE2b-256 8b92885c5e6251b76d3a171ff757a4e167cbb44c02fd9aff67b545a246778a6a

See more details on using hashes here.

File details

Details for the file lunr-0.7.0.post1-py3-none-any.whl.

File metadata

  • Download URL: lunr-0.7.0.post1-py3-none-any.whl
  • Upload date:
  • Size: 35.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.10.4

File hashes

Hashes for lunr-0.7.0.post1-py3-none-any.whl
Algorithm Hash digest
SHA256 77cce585d195d412cff362698799c9571ff3e285fc6bd8816ecbc9ec82dbb368
MD5 ca501dd74b1679bf539263712d2862c9
BLAKE2b-256 516c9209b793fc98f9211846f3b2ec63e0780d30c26b9a0f2985100430dcd238

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page