Code-generation for various ML models into native code.
Project description
m2cgen
m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#).
Installation
Supported Python version is >= 3.4.
pip install m2cgen
Supported Languages
- C
- C#
- Go
- Java
- JavaScript
- Python
- Visual Basic
Supported Models
Classification | Regression | |
---|---|---|
Linear | LogisticRegression, LogisticRegressionCV, RidgeClassifier, RidgeClassifierCV, SGDClassifier, PassiveAggressiveClassifier | LinearRegression, HuberRegressor, ElasticNet, ElasticNetCV, TheilSenRegressor, Lars, LarsCV, Lasso, LassoCV, LassoLars, LassoLarsIC, OrthogonalMatchingPursuit, OrthogonalMatchingPursuitCV, Ridge, RidgeCV, BayesianRidge, ARDRegression, SGDRegressor, PassiveAggressiveRegressor |
SVM | SVC, NuSVC, LinearSVC | SVR, NuSVR, LinearSVR |
Tree | DecisionTreeClassifier, ExtraTreeClassifier | DecisionTreeRegressor, ExtraTreeRegressor |
Random Forest | RandomForestClassifier, ExtraTreesClassifier | RandomForestRegressor, ExtraTreesRegressor |
Boosting | XGBClassifier(gbtree/dart booster only), LGBMClassifier(gbdt/dart booster only) | XGBRegressor(gbtree/dart booster only), LGBMRegressor(gbdt/dart booster only) |
Classification Output
Linear/Linear SVM
Binary
Scalar value; signed distance of the sample to the hyperplane for the second class.
Multiclass
Vector value; signed distance of the sample to the hyperplane per each class.
Comment
The output is consistent with the output of LinearClassifierMixin.decision_function
.
SVM
Binary
Scalar value; signed distance of the sample to the hyperplane for the second class.
Multiclass
Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).
Comment
The output is consistent with the output of BaseSVC.decision_function
when the decision_function_shape
is set to ovo
.
Tree/Random Forest/XGBoost/LightGBM
Binary
Vector value; class probabilities.
Multiclass
Vector value; class probabilities.
Comment
The output is consistent with the output of the predict_proba
method of DecisionTreeClassifier
/ForestClassifier
/XGBClassifier
/LGBMClassifier
.
Usage
Here's a simple example of how a linear model trained in Python environment can be represented in Java code:
from sklearn.datasets import load_boston
from sklearn import linear_model
import m2cgen as m2c
boston = load_boston()
X, y = boston.data, boston.target
estimator = linear_model.LinearRegression()
estimator.fit(X, y)
code = m2c.export_to_java(estimator)
Generated Java code:
public class Model {
public static double score(double[] input) {
return (((((((((((((36.45948838508965) + ((input[0]) * (-0.10801135783679647))) + ((input[1]) * (0.04642045836688297))) + ((input[2]) * (0.020558626367073608))) + ((input[3]) * (2.6867338193449406))) + ((input[4]) * (-17.76661122830004))) + ((input[5]) * (3.8098652068092163))) + ((input[6]) * (0.0006922246403454562))) + ((input[7]) * (-1.475566845600257))) + ((input[8]) * (0.30604947898516943))) + ((input[9]) * (-0.012334593916574394))) + ((input[10]) * (-0.9527472317072884))) + ((input[11]) * (0.009311683273794044))) + ((input[12]) * (-0.5247583778554867));
}
}
You can find more examples of generated code for different models/languages here.
CLI
m2cgen
can be used as a CLI tool to generate code using serialized model objects (pickle protocol):
$ m2cgen <pickle_file> --language <language> [--indent <indent>] [--class_name <class_name>]
[--module_name <module_name>] [--package_name <package_name>] [--namespace <namespace>]
[--recursion-limit <recursion_limit>]
Piping is also supported:
$ cat <pickle_file> | m2cgen --language <language>
FAQ
Q: Generation fails with RuntimeError: maximum recursion depth exceeded
error.
A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>)
.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file m2cgen-0.5.0.tar.gz
.
File metadata
- Download URL: m2cgen-0.5.0.tar.gz
- Upload date:
- Size: 25.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d75e0c01a46e3b1ff46d96a5da3db19bb15d3a14b9c0cf292619c29ea182faba |
|
MD5 | 559d96d0ccba68f1b69ce97f46d46414 |
|
BLAKE2b-256 | 6b7203b6b0c2e4debdfc8723d78a1df5590b93e1126a852f95e6a53cbc6b7691 |
File details
Details for the file m2cgen-0.5.0-py3-none-any.whl
.
File metadata
- Download URL: m2cgen-0.5.0-py3-none-any.whl
- Upload date:
- Size: 39.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.22.0 setuptools/42.0.2 requests-toolbelt/0.9.1 tqdm/4.40.0 CPython/3.7.4
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 2988e24922ada85af741a4fce77a1333451c967d61505a7655617d4cc96d930f |
|
MD5 | 68c5fd8b232d4a0261a49495b0d0e33f |
|
BLAKE2b-256 | ed6ff4ab71cf8b6add55ab79ba53de06dd73bda01ea72fad3fd960c1e0dbd5eb |