Skip to main content

Code-generation for various ML models into native code.

Project description

m2cgen

Build Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP, Dart).

Installation

Supported Python version is >= 3.5.

pip install m2cgen

Supported Languages

  • C
  • C#
  • Dart
  • Go
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Visual Basic

Supported Models

Classification Regression
Linear
  • scikit-learn
    • LogisticRegression
    • LogisticRegressionCV
    • PassiveAggressiveClassifier
    • Perceptron
    • RidgeClassifier
    • RidgeClassifierCV
    • SGDClassifier
  • lightning
    • AdaGradClassifier
    • CDClassifier
    • FistaClassifier
    • SAGAClassifier
    • SAGClassifier
    • SDCAClassifier
    • SGDClassifier
  • scikit-learn
    • ARDRegression
    • BayesianRidge
    • ElasticNet
    • ElasticNetCV
    • HuberRegressor
    • Lars
    • LarsCV
    • Lasso
    • LassoCV
    • LassoLars
    • LassoLarsCV
    • LassoLarsIC
    • LinearRegression
    • OrthogonalMatchingPursuit
    • OrthogonalMatchingPursuitCV
    • PassiveAggressiveRegressor
    • RANSACRegressor(only supported regression estimators can be used as a base estimator)
    • Ridge
    • RidgeCV
    • SGDRegressor
    • TheilSenRegressor
  • StatsModels
    • Generalized Least Squares (GLS)
    • Generalized Least Squares with AR Errors (GLSAR)
    • Ordinary Least Squares (OLS)
    • [Gaussian] Process Regression Using Maximum Likelihood-based Estimation (ProcessMLE)
    • Quantile Regression (QuantReg)
    • Weighted Least Squares (WLS)
  • lightning
    • AdaGradRegressor
    • CDRegressor
    • FistaRegressor
    • SAGARegressor
    • SAGRegressor
    • SDCARegressor
SVM
  • scikit-learn
    • LinearSVC
    • NuSVC
    • SVC
  • lightning
    • KernelSVC
    • LinearSVC
  • scikit-learn
    • LinearSVR
    • NuSVR
    • SVR
  • lightning
    • LinearSVR
Tree
  • DecisionTreeClassifier
  • ExtraTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeRegressor
Random Forest
  • ExtraTreesClassifier
  • LGBMClassifier(rf booster only)
  • RandomForestClassifier
  • XGBRFClassifier(binary only, multiclass is not supported yet)
  • ExtraTreesRegressor
  • LGBMRegressor(rf booster only)
  • RandomForestRegressor
  • XGBRFRegressor
Boosting
  • LGBMClassifier(gbdt/dart/goss booster only)
  • XGBClassifier(gbtree/gblinear booster only)
    • LGBMRegressor(gbdt/dart/goss booster only)
    • XGBRegressor(gbtree/gblinear booster only)

    Classification Output

    Linear / Linear SVM / Kernel SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; signed distance of the sample to the hyperplane per each class.

    Comment

    The output is consistent with the output of LinearClassifierMixin.decision_function.

    SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

    Comment

    The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

    Tree / Random Forest / Boosting

    Binary

    Vector value; class probabilities.

    Multiclass

    Vector value; class probabilities.

    Comment

    The output is consistent with the output of the predict_proba method of DecisionTreeClassifier / ExtraTreeClassifier / ExtraTreesClassifier / RandomForestClassifier / XGBRFClassifier / XGBClassifier / LGBMClassifier.

    Usage

    Here's a simple example of how a linear model trained in Python environment can be represented in Java code:

    from sklearn.datasets import load_boston
    from sklearn import linear_model
    import m2cgen as m2c
    
    boston = load_boston()
    X, y = boston.data, boston.target
    
    estimator = linear_model.LinearRegression()
    estimator.fit(X, y)
    
    code = m2c.export_to_java(estimator)
    

    Generated Java code:

    public class Model {
    
        public static double score(double[] input) {
            return (((((((((((((36.45948838508965) + ((input[0]) * (-0.10801135783679647))) + ((input[1]) * (0.04642045836688297))) + ((input[2]) * (0.020558626367073608))) + ((input[3]) * (2.6867338193449406))) + ((input[4]) * (-17.76661122830004))) + ((input[5]) * (3.8098652068092163))) + ((input[6]) * (0.0006922246403454562))) + ((input[7]) * (-1.475566845600257))) + ((input[8]) * (0.30604947898516943))) + ((input[9]) * (-0.012334593916574394))) + ((input[10]) * (-0.9527472317072884))) + ((input[11]) * (0.009311683273794044))) + ((input[12]) * (-0.5247583778554867));
        }
    }
    

    You can find more examples of generated code for different models/languages here.

    CLI

    m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

    $ m2cgen <pickle_file> --language <language> [--indent <indent>] [--function_name <function_name>]
             [--class_name <class_name>] [--module_name <module_name>] [--package_name <package_name>]
             [--namespace <namespace>] [--recursion-limit <recursion_limit>]
    

    Don't forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

    Piping is also supported:

    $ cat <pickle_file> | m2cgen --language <language>
    

    FAQ

    Q: Generation fails with RuntimeError: maximum recursion depth exceeded error.

    A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

    Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

    A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model's class definition should solve the problem.

    Project details


    Download files

    Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

    Source Distribution

    m2cgen-0.7.0.tar.gz (31.9 kB view details)

    Uploaded Source

    Built Distribution

    m2cgen-0.7.0-py3-none-any.whl (51.8 kB view details)

    Uploaded Python 3

    File details

    Details for the file m2cgen-0.7.0.tar.gz.

    File metadata

    • Download URL: m2cgen-0.7.0.tar.gz
    • Upload date:
    • Size: 31.9 kB
    • Tags: Source
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

    File hashes

    Hashes for m2cgen-0.7.0.tar.gz
    Algorithm Hash digest
    SHA256 22d3f05251c7fce9d0c9d01cb430f780b86b7b2a3430ae706b7ed0c372998b54
    MD5 371d096c42aef7381ca1241bbee7eb6c
    BLAKE2b-256 5efa03418cce9864ae11568ef9ad3f426cf72cfec907ed6f09bdc87608562340

    See more details on using hashes here.

    File details

    Details for the file m2cgen-0.7.0-py3-none-any.whl.

    File metadata

    • Download URL: m2cgen-0.7.0-py3-none-any.whl
    • Upload date:
    • Size: 51.8 kB
    • Tags: Python 3
    • Uploaded using Trusted Publishing? No
    • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/46.1.3 requests-toolbelt/0.9.1 tqdm/4.45.0 CPython/3.7.6

    File hashes

    Hashes for m2cgen-0.7.0-py3-none-any.whl
    Algorithm Hash digest
    SHA256 8d0060ed15da825ba280439e41fd9b1565ae420f8cfd17ae8770cf2023db2ba3
    MD5 b1154108061480941c8201c2dbcce761
    BLAKE2b-256 971d152be6a58ecd68cbb8d1eaf90d1ec2c58451b2e88a419113348f407f9354

    See more details on using hashes here.

    Supported by

    AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page