Skip to main content

Securely transfer data between computers

Project description

# Magic Wormhole [![Build Status](https://travis-ci.org/warner/magic-wormhole.svg?branch=master)](https://travis-ci.org/warner/magic-wormhole) [![codecov.io](https://codecov.io/github/warner/magic-wormhole/coverage.svg?branch=master)](https://codecov.io/github/warner/magic-wormhole?branch=master)

Get things from one computer to another, safely.

This package provides a library and a command-line tool named wormhole, which makes it possible to get short pieces of text (and arbitrary-sized files and directories) from one computer to another. The two endpoints are identified by using identical “wormhole codes”: in general, the sending machine generates and displays the code, which must then be typed into the receiving machine.

The codes are short and human-pronounceable, using a phonetically-distinct wordlist. The receiving side offers tab-completion on the codewords, so usually only a few characters must be typed. Wormhole codes are single-use and do not need to be memorized.

## Installation

`$ pip install magic-wormhole`

On Debian/Ubuntu systems, you may first need apt-get python-dev libffi-dev. On OS-X, you may need to install pip.

Developers can clone the source tree and run tox to run the unit tests on all supported (and installed) versions of python: 2.7, 3.3, 3.4, and 3.5.

## Motivation

  • Moving a file to a friend’s machine, when the humans can speak to each other (directly) but the computers cannot

  • Delivering a properly-random password to a new user via the phone

  • Supplying an SSH public key for future login use

Copying files onto a USB stick requires physical proximity, and is uncomfortable for transferring long-term secrets because flash memory is hard to erase. Copying files with ssh/scp is fine, but requires previous arrangements and an account on the target machine, and how do you bootstrap the account? Copying files through email first requires transcribing an email address in the opposite direction, and is even worse for secrets, because email is unencrypted. Copying files through encrypted email requires bootstrapping a GPG key as well as an email address. Copying files through Dropbox is not secure against the Dropbox server and results in a large URL that must be transcribed. Using a URL shortener adds an extra step, reveals the full URL to the shortening service, and leaves a short URL that can be guessed by outsiders.

Many common use cases start with a human-mediated communication channel, such as IRC, IM, email, a phone call, or a face-to-face conversation. Some of these are basically secret, or are “secret enough” to last until the code is delivered and used. If this does not feel strong enough, users can turn on additional verification that doesn’t depend upon the secrecy of the channel.

The notion of a “magic wormhole” comes from the image of two distant wizards speaking the same phrase at the same time, and causing a connection to be established between them. Transferring files securely should be that easy.

## Design

The wormhole tool uses PAKE “Password-Authenticated Key Exchange”, a family of cryptographic algorithms that uses a short low-entropy password to establish a strong high-entropy shared key. This key can then be used to encrypt data. wormhole uses the SPAKE2 algorithm, due to Abdalla and Pointcheval[1].

PAKE effectively trades off interaction against offline attacks. The only way for a network attacker to learn the shared key is to perform a man-in-the-middle attack during the initial connection attempt, and to correctly guess the code being used by both sides. Their chance of doing this is inversely proportional to the entropy of the wormhole code. The default is to use a 16-bit code (use –code-length= to change this), so for each use of the tool, an attacker gets a 1-in-65536 chance of success. As such, users can expect to see many error messages before the attacker has a reasonable chance of success.

## Timing

At present, the two clients must be run within about 3 minutes of each other, as they will stop waiting after that time. This makes the tool most useful for people who are having a real-time conversation already, and want to graduate to a secure connection.

Future releases should increase that to several hours. This will enable a mode in which two humans can decide on a code phrase offline, by choosing a channel number and a few random words, and then go back home to their computers later and begin the wormhole process. (This mode is already supported, but is not currently easy to use because the two users must type the phrases within three minutes of each other).

## Relays

The wormhole library requires a “Rendezvous Server”: a simple relay that delivers messages from one client to another. This allows the wormhole codes to omit IP addresses and port numbers. The URL of a public server is baked into the library for use as a default, and will be freely available until volume or abuse makes it infeasible to support. Applications which desire more reliability can easily run their own relay and configure their clients to use it instead. Code for the Rendezvous Server is included in the library.

The file-transfer commands also use a “Transit Relay”, which is another simple server that glues together two inbound TCP connections and transfers data on each to the other. The wormhole send file mode shares the IP addresses of each client with the other (inside the encrypted message), and both clients first attempt to connect directly. If this fails, they fall back to using the transit relay. As before, the host/port of a public server is baked into the library, and should be sufficient to handle moderate traffic.

The protocol includes provisions to deliver notices and error messages to clients: if either relay must be shut down, these channels will be used to provide information about alternatives.

## CLI tool

  • wormhole send –text TEXT

  • wormhole send FILENAME

  • wormhole send DIRNAME

  • wormhole receive

Both commands accept:

  • –relay-url URL : override the rendezvous server URL

  • –transit-helper tcp:HOST:PORT: override the Transit Relay

  • –code-length WORDS: use more or fewer than 2 words for the code

  • –verify : print (and ask user to compare) extra verification string

## Library

The wormhole module makes it possible for other applications to use these code-protected channels. This includes blocking/synchronous support and async/Twisted support, both for a symmetric scheme. The main module is named wormhole.blocking.transcribe, to reflect that it is for synchronous/blocking code, and uses a PAKE mode whereby one user transcribes their code to the other. (internal names may change in the future).

The file-transfer tools use a second module named wormhole.blocking.transit, which provides an encrypted record-pipe. It knows how to use the Transit Relay as well as direct connections, and attempts them all in parallel. TransitSender and TransitReceiver are distinct, although once the connection is established, data can flow in either direction. All data is encrypted (using nacl/libsodium “secretbox”) using a key derived from the PAKE phase. See src/wormhole/scripts/cmd_send.py for examples.

## License, Compatibility

This library is released under the MIT license, see LICENSE for details.

This library is compatible with python2.7, 3.3, 3.4, and 3.5 . It is probably compatible with py2.6, but the latest Twisted (15.5.0) is not. The (daemonizing) ‘wormhole server start’ command does not yet work with py3, but will in the future once Twisted itself is finished being ported.

This package depends upon the SPAKE2, pynacl, requests, and argparse libraries. To run a relay server, use the async support, or run the unit tests, you must also install Twisted.

#### footnotes

[1]: http://www.di.ens.fr/~pointche/Documents/Papers/2005_rsa.pdf “RSA 2005”

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

magic-wormhole-0.7.0.tar.gz (111.5 kB view details)

Uploaded Source

Built Distribution

magic_wormhole-0.7.0-py2.py3-none-any.whl (103.1 kB view details)

Uploaded Python 2 Python 3

File details

Details for the file magic-wormhole-0.7.0.tar.gz.

File metadata

File hashes

Hashes for magic-wormhole-0.7.0.tar.gz
Algorithm Hash digest
SHA256 7fc6c1cf904c66ae2cda9750a952a71a8730622be9581f0cde93b2dc7e16fe9e
MD5 8a4ba213bd4c52e42b5b8f3fff43bd03
BLAKE2b-256 3d4aeb3b3cf23dd2018f178f5edf876470e9191bc95b6d0da4aee528aeed0725

See more details on using hashes here.

File details

Details for the file magic_wormhole-0.7.0-py2.py3-none-any.whl.

File metadata

File hashes

Hashes for magic_wormhole-0.7.0-py2.py3-none-any.whl
Algorithm Hash digest
SHA256 82fe080734e9f10ab8a76869110b3bc0dc8ccc7800727bb518a975f5cbea5144
MD5 412f5c853801fb844ffad202ef0f9a1f
BLAKE2b-256 9327d99e2b6624081a6dfd4cd413cb428f919631007afd0c8424b92bf09bebe7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page