Skip to main content

maml is a machine learning library for materials science.

Project description

maml (MAterials Machine Learning) is a Python package that aims to provide useful high-level interfaces that make ML for materials science as easy as possible.

The goal of maml is not to duplicate functionality already available in other packages. maml relies on well-established packages such as scikit-learn and tensorflow for implementations of ML algorithms, as well as other materials science packages such as pymatgen and matminer for crystal/molecule manipulation and feature generation.

Official documentation at http://maml.ai/

Features

  1. Convert materials (crystals and molecules) into features. In addition to common compositional, site and structural features, we provide the following fine-grain local environment features.

  1. Bispectrum coefficients

  2. Behler Parrinello symmetry functions

  3. Smooth Overlap of Atom Position (SOAP)

  4. Graph network features (composition, site and structure)

  1. Use ML to learn relationship between features and targets. Currently, the maml supports sklearn and keras models.

  2. Applications:

  1. pes for modelling the potential energy surface, constructing surrogate models for property prediction.

  1. Neural Network Potential (NNP)

  2. Gaussian approximation potential (GAP) with SOAP features

  3. Spectral neighbor analysis potential (SNAP)

  4. Moment Tensor Potential (MTP)

  1. rfxas for random forest models in predicting atomic local environments from X-ray absorption spectroscopy.

Installation

Pip install via PyPI:

pip install maml

To run the potential energy surface (pes), lammps installation is required you can install from source or from conda:

conda install -c conda-forge/label/cf202003 lammps

The SNAP potential comes with this lammps installation. The GAP package for GAP and MLIP package for MTP are needed to run the corresponding potentials. For fitting NNP potential, the n2p2 package is needed.

Install all the libraries from requirement.txt file:

pip install -r requirements.txt

For all the requirements above:

pip install -r requirements-ci.txt
pip install -r requirements-optional.txt
pip install -r requirements-tf.txt
pip install -r requirements.txt

Citing

@misc{maml,
    author = {Chen, Chi and Zuo, Yunxing and Ye, Weike and Ong, Shyue Ping},
    title = {{Maml - materials machine learning package}},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {https://github.com/materialsvirtuallab/maml},
}

For the ML-IAP package (maml.pes), please cite:

Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csányi, G.; Shapeev, A. V.; Thompson, A. P.;
Wood, M. A.; Ong, S. P. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
J. Phys. Chem. A 2020, 124 (4), 731–745. https://doi.org/10.1021/acs.jpca.9b08723.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maml-2021.3.2.tar.gz (1.1 MB view details)

Uploaded Source

File details

Details for the file maml-2021.3.2.tar.gz.

File metadata

  • Download URL: maml-2021.3.2.tar.gz
  • Upload date:
  • Size: 1.1 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.58.0 CPython/3.8.7

File hashes

Hashes for maml-2021.3.2.tar.gz
Algorithm Hash digest
SHA256 017f361c409b1fe699966c554fcb0ef252fcfb4208822c780f5b91376eecfea9
MD5 64f7640186d9d1f593517c4b0ba65aff
BLAKE2b-256 836a39413cfa483bc4564c0080a75098013819f74a2de3325fd3d127beb23ba5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page