Skip to main content

MAterials Machine Learning (maml) is a machine learning library for materials science.

Project description

maml

GitHub license Linting Testing Downloads codecov

maml (MAterials Machine Learning) is a Python package that aims to provide useful high-level interfaces that make ML for materials science as easy as possible.

The goal of maml is not to duplicate functionality already available in other packages. maml relies on well-established packages such as scikit-learn and tensorflow for implementations of ML algorithms, as well as other materials science packages such as pymatgen and matminer for crystal/molecule manipulation and feature generation.

Official documentation at https://materialsvirtuallab.github.io/maml/

Features

  1. Convert materials (crystals and molecules) into features. In addition to common compositional, site and structural features, we provide the following fine-grain local environment features.

a) Bispectrum coefficients b) Behler Parrinello symmetry functions c) Smooth Overlap of Atom Position (SOAP) d) Graph network features (composition, site and structure)

  1. Use ML to learn relationship between features and targets. Currently, the maml supports sklearn and keras models.

  2. Applications:

a) pes for modelling the potential energy surface, constructing surrogate models for property prediction.

i) Neural Network Potential (NNP) ii) Gaussian approximation potential (GAP) with SOAP features iii) Spectral neighbor analysis potential (SNAP) iv) Moment Tensor Potential (MTP)

b) rfxas for random forest models in predicting atomic local environments from X-ray absorption spectroscopy.

c) bowsr for rapid structural relaxation with bayesian optimization and surrogate energy model.

Installation

Pip install via PyPI:

pip install maml

To run the potential energy surface (pes), lammps installation is required you can install from source or from conda::

conda install -c conda-forge/label/cf202003 lammps

The SNAP potential comes with this lammps installation. The GAP package for GAP and MLIP package for MTP are needed to run the corresponding potentials. For fitting NNP potential, the n2p2 package is needed.

Install all the libraries from requirement.txt file::

pip install -r requirements.txt

For all the requirements above::

pip install -r requirements-ci.txt
pip install -r requirements-optional.txt
pip install -r requirements-dl.txt
pip install -r requirements.txt

Usage

Many Jupyter notebooks are available on usage. See notebooks. We also have a tool and tutorial lecture at nanoHUB.

API documentation

See API docs.

Citing

@misc{
    maml,
    author = {Chen, Chi and Zuo, Yunxing, Ye, Weike, Ji, Qi and Ong, Shyue Ping},
    title = {{Maml - materials machine learning package}},
    year = {2020},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/materialsvirtuallab/maml}},
}

For the ML-IAP package (maml.pes), please cite::

Zuo, Y.; Chen, C.; Li, X.; Deng, Z.; Chen, Y.; Behler, J.; Csányi, G.; Shapeev, A. V.; Thompson, A. P.;
Wood, M. A.; Ong, S. P. Performance and Cost Assessment of Machine Learning Interatomic Potentials.
J. Phys. Chem. A 2020, 124 (4), 731–745. https://doi.org/10.1021/acs.jpca.9b08723.

For the BOWSR package (maml.bowsr), please cite::

Zuo, Y.; Qin, M.; Chen, C.; Ye, W.; Li, X.; Luo, J.; Ong, S. P. Accelerating Materials Discovery with Bayesian
Optimization and Graph Deep Learning. Materials Today 2021, 51, 126–135.
https://doi.org/10.1016/j.mattod.2021.08.012.

For the AtomSets model (maml.models.AtomSets), please cite::

Chen, C.; Ong, S. P. AtomSets as a hierarchical transfer learning framework for small and large materials
datasets. Npj Comput. Mater. 2021, 7, 173. https://doi.org/10.1038/s41524-021-00639-w

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maml-2024.6.13.tar.gz (2.2 MB view details)

Uploaded Source

Built Distribution

maml-2024.6.13-py3-none-any.whl (2.3 MB view details)

Uploaded Python 3

File details

Details for the file maml-2024.6.13.tar.gz.

File metadata

  • Download URL: maml-2024.6.13.tar.gz
  • Upload date:
  • Size: 2.2 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.5

File hashes

Hashes for maml-2024.6.13.tar.gz
Algorithm Hash digest
SHA256 7902e00973a5ef1143b783e7ef8c0fa1dad8c4cd73b621a86b440af0ab36c042
MD5 6bf08f26eac2ba2f5ff21ce27e8371f3
BLAKE2b-256 8a12bd817a229870909c62a23a526fd7d25743def88725525c7de80041743440

See more details on using hashes here.

File details

Details for the file maml-2024.6.13-py3-none-any.whl.

File metadata

  • Download URL: maml-2024.6.13-py3-none-any.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.0 CPython/3.11.5

File hashes

Hashes for maml-2024.6.13-py3-none-any.whl
Algorithm Hash digest
SHA256 eed2ab27739f869cea0c657d66a8224bac02a5bd04cb19ab5baecc53aca2d2fd
MD5 8e8aedf92114666a28a0da9eb43819f5
BLAKE2b-256 ca7534de1e6975888ef2bc1dbe572573bdcb7de67a2bbf380f46eeb948c2c4e6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page