Skip to main content

A Python implementation of the moving average principal components analysis methods from GIFT.

Project description

# mapca A Python implementation of the moving average principal components analysis methods from GIFT

[![CircleCI](https://circleci.com/gh/ME-ICA/mapca.svg?style=shield)](https://circleci.com/gh/ME-ICA/mapca) [![Codecov](https://codecov.io/gh/ME-ICA/mapca/branch/main/graph/badge.svg?token=GEKDT6R0B7)](https://codecov.io/gh/ME-ICA/mapca) [![Average time to resolve an issue](http://isitmaintained.com/badge/resolution/ME-ICA/mapca.svg)](http://isitmaintained.com/project/ME-ICA/mapca “Average time to resolve an issue”) [![Percentage of issues still open](http://isitmaintained.com/badge/open/ME-ICA/mapca.svg)](http://isitmaintained.com/project/ME-ICA/mapca “Percentage of issues still open”) [![Join the chat at https://gitter.im/ME-ICA/mapca](https://badges.gitter.im/ME-ICA/mapca.svg)](https://gitter.im/ME-ICA/mapca?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)

## About

mapca is a Python package that performs dimensionality reduction with principal component analysis (PCA) on functional magnetic resonance imaging (fMRI) data. It is a translation to Python of the dimensionality reduction technique used in the MATLAB-based [GIFT package](https://trendscenter.org/software/gift/) and introduced by Li et al. 2007[^1].

[^1]: Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 1251–1266. https://doi.org/10.1002/hbm.20359

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapca-0.0.1rc0.tar.gz (31.5 kB view details)

Uploaded Source

Built Distribution

mapca-0.0.1rc0-py3-none-any.whl (24.8 kB view details)

Uploaded Python 3

File details

Details for the file mapca-0.0.1rc0.tar.gz.

File metadata

  • Download URL: mapca-0.0.1rc0.tar.gz
  • Upload date:
  • Size: 31.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mapca-0.0.1rc0.tar.gz
Algorithm Hash digest
SHA256 69231460f5325d5b741b21e769f86cd3384bbb5fef966bdd1f773001e92a9681
MD5 38e67957cfb7c1b3e34649c68f88c43e
BLAKE2b-256 5792ea216e118154b46f2d356a14f051092660131e6532eb2130618c4762a038

See more details on using hashes here.

File details

Details for the file mapca-0.0.1rc0-py3-none-any.whl.

File metadata

  • Download URL: mapca-0.0.1rc0-py3-none-any.whl
  • Upload date:
  • Size: 24.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.0 importlib_metadata/3.7.3 packaging/20.9 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.10

File hashes

Hashes for mapca-0.0.1rc0-py3-none-any.whl
Algorithm Hash digest
SHA256 67058ce9aa626959acaaa422842ad6d898c5fdc790c2289480ed61096ede48e2
MD5 28b81cb4abc4020caf50024d6728e96a
BLAKE2b-256 ff27fc924ec52280df1947dab16fe036b156c5b6aeccf04d9a0ab8ff91c7d15d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page