Skip to main content

Classification Schemes for Choropleth Maps.

Project description

mapclassify: Classification Schemes for Choropleth Maps

unittests codecov PyPI version DOI License Code style: black Binder

mapclassify implements a family of classification schemes for choropleth maps. Its focus is on the determination of the number of classes, and the assignment of observations to those classes. It is intended for use with upstream mapping and geovisualization packages (see geopandas and geoplot) that handle the rendering of the maps.

For further theoretical background see Rey, S.J., D. Arribas-Bel, and L.J. Wolf (2020) "Geographic Data Science with PySAL and the PyData Stack”.

Using mapclassify

Load built-in example data reporting employment density in 58 California counties:

>>> import mapclassify
>>> y = mapclassify.load_example()
>>> y.mean()
125.92810344827588
>>> y.min(), y.max()
(0.13, 4111.4499999999998)

Map Classifiers Supported

BoxPlot

>>> mapclassify.BoxPlot(y)
BoxPlot

     Interval        Count
--------------------------
(   -inf,  -52.88] |     0
( -52.88,    2.57] |    15
(   2.57,    9.36] |    14
(   9.36,   39.53] |    14
(  39.53,   94.97] |     6
(  94.97, 4111.45] |     9

EqualInterval

>>> mapclassify.EqualInterval(y)
EqualInterval

     Interval        Count
--------------------------
[   0.13,  822.39] |    57
( 822.39, 1644.66] |     0
(1644.66, 2466.92] |     0
(2466.92, 3289.19] |     0
(3289.19, 4111.45] |     1

FisherJenks

>>> import numpy as np
>>> np.random.seed(123456)
>>> mapclassify.FisherJenks(y, k=5)
FisherJenks

     Interval        Count
--------------------------
[   0.13,   75.29] |    49
(  75.29,  192.05] |     3
( 192.05,  370.50] |     4
( 370.50,  722.85] |     1
( 722.85, 4111.45] |     1

FisherJenksSampled

>>> np.random.seed(123456)
>>> x = np.random.exponential(size=(10000,))
>>> mapclassify.FisherJenks(x, k=5)
FisherJenks

   Interval      Count
----------------------
[ 0.00,  0.64] |  4694
( 0.64,  1.45] |  2922
( 1.45,  2.53] |  1584
( 2.53,  4.14] |   636
( 4.14, 10.61] |   164

>>> mapclassify.FisherJenksSampled(x, k=5)
FisherJenksSampled

   Interval      Count
----------------------
[ 0.00,  0.70] |  5020
( 0.70,  1.63] |  2952
( 1.63,  2.88] |  1454
( 2.88,  5.32] |   522
( 5.32, 10.61] |    52

HeadTailBreaks

>>> mapclassify.HeadTailBreaks(y)
HeadTailBreaks

     Interval        Count
--------------------------
[   0.13,  125.93] |    50
( 125.93,  811.26] |     7
( 811.26, 4111.45] |     1

JenksCaspall

>>> mapclassify.JenksCaspall(y, k=5)
JenksCaspall

     Interval        Count
--------------------------
[   0.13,    1.81] |    14
(   1.81,    7.60] |    13
(   7.60,   29.82] |    14
(  29.82,  181.27] |    10
( 181.27, 4111.45] |     7

JenksCaspallForced

>>> mapclassify.JenksCaspallForced(y, k=5)
JenksCaspallForced

     Interval        Count
--------------------------
[   0.13,    1.34] |    12
(   1.34,    5.90] |    12
(   5.90,   16.70] |    13
(  16.70,   50.65] |     9
(  50.65, 4111.45] |    12

JenksCaspallSampled

>>> mapclassify.JenksCaspallSampled(y, k=5)
JenksCaspallSampled

     Interval        Count
--------------------------
[   0.13,   12.02] |    33
(  12.02,   29.82] |     8
(  29.82,   75.29] |     8
(  75.29,  192.05] |     3
( 192.05, 4111.45] |     6

MaxP

>>> mapclassify.MaxP(y)
MaxP

     Interval        Count
--------------------------
[   0.13,    8.70] |    29
(   8.70,   16.70] |     8
(  16.70,   20.47] |     1
(  20.47,   66.26] |    10
(  66.26, 4111.45] |    10

MaximumBreaks

>>> mapclassify.MaximumBreaks(y, k=5)
MaximumBreaks

     Interval        Count
--------------------------
[   0.13,  146.00] |    50
( 146.00,  228.49] |     2
( 228.49,  546.67] |     4
( 546.67, 2417.15] |     1
(2417.15, 4111.45] |     1

NaturalBreaks

>>> mapclassify.NaturalBreaks(y, k=5)
NaturalBreaks

     Interval        Count
--------------------------
[   0.13,   75.29] |    49
(  75.29,  192.05] |     3
( 192.05,  370.50] |     4
( 370.50,  722.85] |     1
( 722.85, 4111.45] |     1

Quantiles

>>> mapclassify.Quantiles(y, k=5)
Quantiles

     Interval        Count
--------------------------
[   0.13,    1.46] |    12
(   1.46,    5.80] |    11
(   5.80,   13.28] |    12
(  13.28,   54.62] |    11
(  54.62, 4111.45] |    12

Percentiles

>>> mapclassify.Percentiles(y, pct=[33, 66, 100])
Percentiles

     Interval        Count
--------------------------
[   0.13,    3.36] |    19
(   3.36,   22.86] |    19
(  22.86, 4111.45] |    20

StdMean

>>> mapclassify.StdMean(y)
StdMean

     Interval        Count
--------------------------
(   -inf, -967.36] |     0
(-967.36, -420.72] |     0
(-420.72,  672.57] |    56
( 672.57, 1219.22] |     1
(1219.22, 4111.45] |     1

UserDefined

>>> mapclassify.UserDefined(y, bins=[22, 674, 4112])
UserDefined

     Interval        Count
--------------------------
[   0.13,   22.00] |    38
(  22.00,  674.00] |    18
( 674.00, 4112.00] |     2

Use Cases

Creating and using a classification instance

>>> bp = mapclassify.BoxPlot(y)
>>> bp
BoxPlot

     Interval        Count
--------------------------
(   -inf,  -52.88] |     0
( -52.88,    2.57] |    15
(   2.57,    9.36] |    14
(   9.36,   39.53] |    14
(  39.53,   94.97] |     6
(  94.97, 4111.45] |     9

>>> bp.bins
array([ -5.28762500e+01,   2.56750000e+00,   9.36500000e+00,
         3.95300000e+01,   9.49737500e+01,   4.11145000e+03])
>>> bp.counts
array([ 0, 15, 14, 14,  6,  9])
>>> bp.yb
array([5, 1, 2, 3, 2, 1, 5, 1, 3, 3, 1, 2, 2, 1, 2, 2, 2, 1, 5, 2, 4, 1, 2,
       2, 1, 1, 3, 3, 3, 5, 3, 1, 3, 5, 2, 3, 5, 5, 4, 3, 5, 3, 5, 4, 2, 1,
       1, 4, 4, 3, 3, 1, 1, 2, 1, 4, 3, 2])

Apply

>>> import mapclassify 
>>> import pandas
>>> from numpy import linspace as lsp
>>> data = [lsp(3,8,num=10), lsp(10, 0, num=10), lsp(-5, 15, num=10)]
>>> data = pandas.DataFrame(data).T
>>> data
          0          1          2
0  3.000000  10.000000  -5.000000
1  3.555556   8.888889  -2.777778
2  4.111111   7.777778  -0.555556
3  4.666667   6.666667   1.666667
4  5.222222   5.555556   3.888889
5  5.777778   4.444444   6.111111
6  6.333333   3.333333   8.333333
7  6.888889   2.222222  10.555556
8  7.444444   1.111111  12.777778
9  8.000000   0.000000  15.000000
>>> data.apply(mapclassify.Quantiles.make(rolling=True))
   0  1  2
0  0  4  0
1  0  4  0
2  1  4  0
3  1  3  0
4  2  2  1
5  2  1  2
6  3  0  4
7  3  0  4
8  4  0  4
9  4  0  4

Development Notes

Because we use geopandas in development, and geopandas has stable mapclassify as a dependency, setting up a local development installation involves creating a conda environment, then replacing the stable mapclassify with the development version of mapclassify in the development environment. This can be accomplished with the following steps:

conda-env create -f environment.yml
conda activate mapclassify
conda remove -n mapclassify mapclassify
pip install -e .

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mapclassify-2.3.0.tar.gz (39.9 kB view details)

Uploaded Source

Built Distribution

mapclassify-2.3.0-py3-none-any.whl (35.6 kB view details)

Uploaded Python 3

File details

Details for the file mapclassify-2.3.0.tar.gz.

File metadata

  • Download URL: mapclassify-2.3.0.tar.gz
  • Upload date:
  • Size: 39.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for mapclassify-2.3.0.tar.gz
Algorithm Hash digest
SHA256 bfe1ec96afe7f866560d25f9f00e5c4dae97d5b69dfe758dbe02c4993261365b
MD5 8feea65cffdf133cae1c069564449534
BLAKE2b-256 e578b2fd52f04020971fdfd4a3715105062d8cc9f8c883d148bd3193e9b8d72f

See more details on using hashes here.

Provenance

File details

Details for the file mapclassify-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: mapclassify-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 35.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1 requests-toolbelt/0.9.1 tqdm/4.46.1 CPython/3.8.3

File hashes

Hashes for mapclassify-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 29477d04de3bc290647571f7b79e890072b1bc989f0aaa8e95cad8cae16d5027
MD5 dfa3d2426b67a7b83df7fcdec93fc04e
BLAKE2b-256 1180cd58dc848a93bfb01c4b84f26e3d5d6c64266163ca1e2453c3f6fb291ef7

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page