Static memory-efficient & fast Trie-like structures for Python (based on marisa-trie C++ library)
Project description
marisa-trie
Static memory-efficient Trie-like structures for Python (2.x and 3.x).
String data in a MARISA-trie may take up to 50x-100x less memory than in a standard Python dict; the raw lookup speed is comparable; trie also provides fast advanced methods like prefix search.
Based on marisa-trie C++ library.
Installation
pip install marisa-trie
Usage
There are several Trie classes in this package:
marisa_trie.Trie - read-only trie-based data structure that maps unicode keys to auto-generated unique IDs;
marisa_trie.RecordTrie - read-only trie-based data structure that maps unicode keys to lists of data tuples. All tuples must be of the same format (the data is packed using python struct module).
marisa_trie.BytesTrie - read-only Trie that maps unicode keys to lists of bytes objects.
marisa_trie.Trie
Create a new trie:
>>> import marisa_trie >>> trie = marisa_trie.Trie([u'key1', u'key2', u'key12'])
Check if key is in trie:
>>> u'key1' in trie True >>> u'key20' in trie False
Each key is assigned an unique ID from 0 to (n - 1), where n is the number of keys; you can use this ID to store a value in a separate structure (e.g. python list):
>>> trie.key_id(u'key2') 1
Key can be reconstructed from the ID:
>>> trie.restore_key(1) u'key2'
Find all prefixes of a given key:
>>> trie.prefixes(u'key12') [u'key1', u'key12']
There is also a generator version of .prefixes method called .iter_prefixes.
Find all keys from this trie that starts with a given prefix:
>> trie.keys(u'key1') [u'key1', u'key12']
(iterator version .iterkeys(prefix) is also available).
marisa_trie.RecordTrie
Create a new trie:
>>> keys = [u'foo', u'bar', u'foobar', u'foo'] >>> values = [(1, 2), (2, 1), (3, 3), (2, 1)] >>> fmt = "<HH" # a tuple with 2 short integers >>> trie = marisa_trie.RecordTrie(fmt, zip(keys, values))
Trie initial data must be an iterable of tuples (unicode_key, data_tuple). Data tuples will be converted to bytes with struct.pack(fmt, *data_tuple).
Take a look at http://docs.python.org/library/struct.html#format-strings for the format string specification.
Duplicate keys are allowed.
Check if key is in trie:
>>> u'foo' in trie True >>> u'spam' in trie False
Get a values list:
>>> trie[u'bar'] [(2, 1)] >>> trie[u'foo'] [(1, 2), (2, 1)] >>> trie.get(u'bar', 123) [(2, 1)] >>> trie.get(u'BAAR', 123) # default value 123
Find all prefixes of a given key:
>>> trie.prefixes(u'foobarz') [u'foo', u'foobar']
Test whether some key begins with a given prefix:
>>> trie.has_keys_with_prefix(u'fo') True >>> trie.has_keys_with_prefix(u'go') False
Find all keys from this trie that starts with a given prefix:
>> trie.keys(u'fo') [u'foo', u'foo', u'foobar']
Find all items from this trie that starts with a given prefix:
>> trie.items(u'fo') [(u'foo', (1, 2)), (u'foo', (2, 1), (u'foobar', (3, 3))]
marisa_trie.BytesTrie
BytesTrie is similar to RecordTrie, but the values are raw bytes, not tuples:
>>> keys = [u'foo', u'bar', u'foobar', u'foo'] >>> values = [b'foo-value', b'bar-value', b'foobar-value', b'foo-value2'] >>> trie = marisa_trie.BytesTrie(zip(keys, values)) >>> trie[u'bar'] [b'bar-value']
Persistence
Trie objects supports saving/loading, pickling/unpickling and memory mapped I/O.
Write trie to a stream:
>>> with open('my_trie.marisa', 'w') as f: ... trie.write(f)
Save trie to a file:
>>> trie.save('my_trie_copy.marisa')
Read trie from stream:
>>> trie2 = marisa_trie.Trie() >>> with open('my_trie.marisa', 'r') as f: ... trie.read(f)
Load trie from file:
>>> trie2.load('my_trie.marisa')
Trie objects are picklable:
>>> import pickle >>> data = pickle.dumps(trie) >>> trie3 = pickle.loads(data)
You may also build a trie using marisa-build command-line utility (provided by underlying C++ library; it should be downloaded and compiled separately) and then load the trie from the resulting file using .load() method.
Memory mapped I/O
It is possible to use memory mapped file as data source:
>>> trie = marisa_trie.RecordTrie(fmt).mmap('my_record_trie.marisa')
This way the whole dictionary won’t be loaded to memory; memory mapped I/O is an easy way to share dictionary data among processes.
Trie storage options
marisa-trie C++ library provides some configuration options for trie storage; check http://marisa-trie.googlecode.com/svn/trunk/docs/readme.en.html page (scroll down to “Enumeration Constants” section) to get an idea.
These options are exposed as order, num_tries, cache_size and binary keyword arguments for trie constructors.
For example, set order to marisa_trie.LABEL_ORDER in order to make trie functions return results in alphabetical oder:
>>> trie = marisa_trie.RecordTrie(fmt, data, order=marisa_trie.LABEL_ORDER)
Benchmarks
My quick tests show that memory usage is quite decent. For a list of 3000000 (3 million) Russian words memory consumption with different data structures (under Python 2.7):
dict(unicode words -> word lenghts): about 600M
list(unicode words) : about 300M
BaseTrie from datrie library: about 70M
marisa_trie.RecordTrie : 11M
marisa_trie.Trie: 7M
Benchmark results (100k unicode words, integer values (lenghts of the words), Python 3.2, macbook air i5 1.8 Ghz):
dict building 2.919M words/sec Trie building 0.394M words/sec BytesTrie building 0.355M words/sec RecordTrie building 0.354M words/sec dict __getitem__ (hits) 8.239M ops/sec Trie __getitem__ (hits) not supported BytesTrie __getitem__ (hits) 0.498M ops/sec RecordTrie __getitem__ (hits) 0.404M ops/sec dict get() (hits) 4.410M ops/sec Trie get() (hits) not supported BytesTrie get() (hits) 0.458M ops/sec RecordTrie get() (hits) 0.364M ops/sec dict get() (misses) 4.869M ops/sec Trie get() (misses) not supported BytesTrie get() (misses) 0.849M ops/sec RecordTrie get() (misses) 0.816M ops/sec dict __contains__ (hits) 8.053M ops/sec Trie __contains__ (hits) 1.018M ops/sec BytesTrie __contains__ (hits) 0.605M ops/sec RecordTrie __contains__ (hits) 0.618M ops/sec dict __contains__ (misses) 6.489M ops/sec Trie __contains__ (misses) 2.047M ops/sec BytesTrie __contains__ (misses) 1.079M ops/sec RecordTrie __contains__ (misses) 1.123M ops/sec dict items() 57.248 ops/sec Trie items() not supported BytesTrie items() 11.691 ops/sec RecordTrie items() 8.369 ops/sec dict keys() 217.920 ops/sec Trie keys() 19.589 ops/sec BytesTrie keys() 14.849 ops/sec RecordTrie keys() 15.369 ops/sec Trie.prefixes (hits) 0.594M ops/sec Trie.prefixes (mixed) 1.874M ops/sec Trie.prefixes (misses) 1.447M ops/sec RecordTrie.prefixes (hits) 0.103M ops/sec RecordTrie.prefixes (mixed) 0.458M ops/sec RecordTrie.prefixes (misses) 0.164M ops/sec Trie.iter_prefixes (hits) 0.588M ops/sec Trie.iter_prefixes (mixed) 1.470M ops/sec Trie.iter_prefixes (misses) 1.170M ops/sec Trie.keys(prefix="xxx"), avg_len(res)==415 5.044K ops/sec Trie.keys(prefix="xxxxx"), avg_len(res)==17 89.363K ops/sec Trie.keys(prefix="xxxxxxxx"), avg_len(res)==3 258.732K ops/sec Trie.keys(prefix="xxxxx..xx"), avg_len(res)==1.4 293.199K ops/sec Trie.keys(prefix="xxx"), NON_EXISTING 1169.524K ops/sec RecordTrie.keys(prefix="xxx"), avg_len(res)==415 3.836K ops/sec RecordTrie.keys(prefix="xxxxx"), avg_len(res)==17 73.591K ops/sec RecordTrie.keys(prefix="xxxxxxxx"), avg_len(res)==3 229.515K ops/sec RecordTrie.keys(prefix="xxxxx..xx"), avg_len(res)==1.4 269.228K ops/sec RecordTrie.keys(prefix="xxx"), NON_EXISTING 1071.433K ops/sec
Tries from marisa_trie are static and uses less memory, tries from datrie are faster and can be updated.
You may also give DAWG a try - it is usually faster than marisa-trie and sometimes can use less memory (depending on data).
Please take this benchmark results with a grain of salt; this is a very simple benchmark on a single data set.
Current limitations
The library is not tested with mingw32 compiler;
.prefixes() method of BytesTrie and RecordTrie is quite slow and doesn’t have iterator counterpart;
read() and write() methods don’t work with file-like objects (they work only with real files; pickling works fine for file-like objects);
there are keys() and items() methods but no values() method.
Contributions are welcome!
Contributing
Development happens at github and bitbucket:
The main issue tracker is at github: https://github.com/kmike/marisa-trie/issues
Feel free to submit ideas, bugs, pull requests (git or hg) or regular patches.
If you found a bug in a C++ part please report it to the original bug tracker.
How is source code organized
There are 4 folders in repository:
bench - benchmarks & benchmark data;
lib - original unmodified marisa-trie C++ library which is bundled for easier distribution; if something is have to be fixed in this library consider fixing it in the original repo ;
src - wrapper code; src/marisa_trie.pyx is a wrapper implementation; src/*.pxd files are Cython headers for corresponding C++ headers; src/*.cpp files are the pre-built extension code and shouldn’t be modified directly (they should be updated via update_cpp.sh script).
tests - the test suite.
Running tests and benchmarks
Make sure tox is installed and run
$ tox
from the source checkout. Tests should pass under python 2.6, 2.7, 3.2 and 3.3.
In order to run benchmarks, type
$ tox -c bench.ini
License
Wrapper code is licensed under MIT License. Bundled marisa-trie C++ library is dual-licensed under LGPL and BSD 2-clause license.
CHANGES
0.5.2 (2014-02-08)
fix Trie.restore_key method - it was reading past declared string length;
rebuild wrapper with Cython 0.20.
0.5.1 (2013-10-03)
has_keys_with_prefix(prefix) method (thanks Matt Hickford)
0.5 (2013-05-07)
BytesTrie.iterkeys, BytesTrie.iteritems, RecordTrie.iterkeys and RecordTrie.iteritems methods;
wrapper is rebuilt with Cython 0.19;
value_separator parameter for BytesTrie and RecordTrie.
0.4 (2013-02-28)
improved trie building: weights optional parameter;
improved trie building: unnecessary input sorting is removed;
wrapper is rebuilt with Cython 0.18;
bundled marisa-trie C++ library is updated to svn r133.
0.3.8 (2013-01-03)
Rebuild wrapper with Cython pre-0.18;
update benchmarks.
0.3.7 (2012-09-21)
Update bundled marisa-trie C++ library (this may fix more mingw issues);
Python 3.3 support is back.
0.3.6 (2012-09-05)
much faster (3x-7x) .items() and .keys() methods for all tries; faster (up to 3x) .prefixes() method for Trie.
0.3.5 (2012-08-30)
Pickling of RecordTrie is fixed (thanks lazarou for the report);
error messages should become more useful.
0.3.4 (2012-08-29)
Issues with mingw32 should be resolved (thanks Susumu Yata).
0.3.3 (2012-08-27)
.get(key, default=None) method for BytesTrie and RecordTrie;
small README improvements.
0.3.2 (2012-08-26)
Small code cleanup;
load, read and mmap methods returns ‘self’;
I can’t run tests (via tox) under Python 3.3 so it is removed from supported versions for now.
0.3.1 (2012-08-23)
.prefixes() support for RecordTrie and BytesTrie.
0.3 (2012-08-23)
RecordTrie and BytesTrie are introduced;
IntTrie class is removed (probably temporary?);
dumps/loads methods are renamed to tobytes/frombytes;
benchmark & tests improvements;
support for MARISA-trie config options is added.
0.2 (2012-08-19)
Pickling/unpickling support;
dumps/loads methods;
python 3.3 workaround;
improved tests;
benchmarks.
0.1 (2012-08-17)
Initial release.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
File details
Details for the file marisa-trie-0.5.2.tar.gz
.
File metadata
- Download URL: marisa-trie-0.5.2.tar.gz
- Upload date:
- Size: 198.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 7fa92c8af24508584c5d7bfa74f95b4db980fcca53e91785498aa5c5f83f8ef1 |
|
MD5 | e5729a0bb32a3322a711d31bc398f227 |
|
BLAKE2b-256 | e3f246961557fb72df219a45539e6843b82b577127162c6a03a4d484f5de1c22 |