Python tool to composite two images using multiple mask images
Project description
maskilayer
maskilayer
is a Python tool for compositing two images using one or more mask images.
- Composite two images (background + overlay) using one or more mask images
- Supply positive masks (overlay is preferred in bright areas of the mask) or negative masks (overlay is preferred in dark mask areas)
- Normalize masks with adjustable levels (0-5)
1. Installation
Install maskilayer
using pip:
pip install --upgrade maskilayer
or the development version in a specific Python:
python3.11 -m pip install --upgrade git+https://github.com/twardoch/maskilayer
2. Rationale
2.1. Selective image sharpening
Combine a sharpened image with its original version using a segmentation mask:
- Process an original image with an automatic sharpening method.
- Use a segmentation model to generate a segmentation mask that isolates a specific subject.
- Use
maskilayer
to composite:- background: original image
- overlay: sharpened version
- mask: segmentation mask
maskilayer
will save a result, which will be a composite image where only the subject is sharpened, while the rest remains as in the original.
2.2. Creative upscaling with depth based compositing
Blend two differently upscaled versions of an image using a depth mask:
- Upscale an image using a conservative upscaler like Codeformer to get predictable details for the background areas of the image. Supply the conservative upscale as background to
maskilayer
. - Upscale the same image using a creative upscaler like Ultimate SD Upscale to get additional details for foreground (subject) areas of the image. Supply the creative upscale as overlay (compositing image) to
maskilayer
. - Generate a depth mask using Depth Anything or Midas (where the far areas are dark, and the close areas are bright). Supply the result as the (positive) mask to
maskilayer
. Or use a model like Marigold (where the close subjects are dark), and supply the resulting mask as inverted (negative) mask. - Use
maskilayer
to composite:- background: conservative upscale
- overlay: creative upscale
- mask: depth mask (inverted mask if close areas are dark)
maskilayer
will save a result, which will be a composite image with creative details for close subjects, and more conservative rendering for distant areas.
3. Usage
3.1. Command Line Interface
3.1.1. Basic usage
maskilayer -b background.png -c overlay.png -o output.png
3.1.2. Selective image sharpening example
maskilayer --back original.png --comp sharpened.png --out sharpened_subject.png --masks segmentation_mask.png --norm 3 --verbose
3.1.3. Creative upscaling with depth based compositing example
maskilayer --back conservative_upscale.png --comp creative_upscale.png --out composite_upscale.png --masks "depth_mask1.png;depth_mask2.png" --imasks "inverted_depth_mask3.png" --norm 2 --verbose
3.1.4. CLI documentation
NAME
maskilayer - Composite two images using mask(s).
SYNOPSIS
maskilayer <flags>
DESCRIPTION
Composite two images using mask(s).
FLAGS
-b, --back=BACK
Type: str
Default: ''
layer 0 (background image path)
-c, --comp=COMP
Type: str
Default: ''
layer 1 (overlay image path that will be composited via masks)
-o, --out=OUT
Type: str
Default: ''
output composite image
-s, --smask=SMASK
Type: str
Default: ''
path to save the final mask (optional)
-m, --masks=MASKS
Type: Optional
Default: None
;-separated mask image paths (optional)
-i, --imasks=IMASKS
Type: Optional
Default: None
;-separated negative mask image paths (optional)
-n, --norm=NORM
Type: int
Default: 0
perform mask normalization with level 0-5
-v, --verbose=VERBOSE
Type: bool
Default: False
print additional output
-f, --fast=FAST
Type: bool
Default: False
save fast but larger files
3.2. Python API
3.2.1. Basic usage
from pathlib import Path
from maskilayer import comp_images
comp_images(
background=Path("background.png"),
overlay=Path("overlay.png"),
output=Path("output.png")
)
3.2.2. Selective image sharpening example
from pathlib import Path
from maskilayer import comp_images
comp_images(
background=Path("original.png"),
overlay=Path("sharpened.png"),
output=Path("sharpened_subject.png"),
masks=[Path("segmentation_mask.png")],
normalize_level=3,
verbose=True
)
3.2.3. Creative upscaling with depth based compositing example
from pathlib import Path
from maskilayer import comp_images
comp_images(
background=Path("conservative_upscale.png"),
overlay=Path("creative_upscale.png"),
output=Path("composite_upscale.png"),
masks=[Path("depth_mask1.png"), Path("depth_mask2.png")],
invert_masks=[Path("inverted_depth_mask3.png")],
normalize_level=2,
verbose=True
)
4. Mask handling
- If you supply multiple masks,
maskilayer
averages them for the final composition. maskilayer
always converts the mask images to grayscale.- If you supply a normalization level,
maskilayer
will adjust the mask contrast:- Level 0 uses masks as-is
- Level 1 stretches grayscale range to full black-white spectrum
- Levels 2-5 progressively increase contrast for more abrupt transitions between bright and dark (level values higher than 5 are permitted but not supported)
4.1. Tips for handling multiple mask paths
4.1.1. In CLI
- Use semicolons (
;
) to separate multiple mask paths (you also may use commas):maskilayer --masks mask1.png;mask2.png;mask3.png
- For inverted masks, use the
--imasks
flag:maskilayer --imasks inverted_mask1.png;inverted_mask2.png
- You can use both positive and negative masks in the same command:
maskilayer --masks positive_mask.png --imasks negative_mask.png
4.1.2. In Python
- Use lists to provide multiple mask paths:
masks=[Path("mask1.png"), Path("mask2.png"), Path("mask3.png")]
- For inverted masks, use the
invert_masks
parameter:invert_masks=[Path("inverted_mask1.png"), Path("inverted_mask2.png")]
- You can use both positive and negative masks in the same function call:
comp_images( ..., masks=[Path("positive_mask.png")], invert_masks=[Path("negative_mask.png")] )
5. License
- Idea & Copyright (c) 2024 Adam Twardoch
- Python code written with assistance from OpenAI GPT-4o and Anthropic Claude 3
- Licensed under the Apache License 2.0
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for maskilayer-1.0.6-py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0a2778ede017b02e41fc0a1eb26fd5317428e72bf9a4125b8aa3cd3c29cd4821 |
|
MD5 | f4d9774151724dfcb3f2e6939ea7f0ce |
|
BLAKE2b-256 | 8692f7289c0595b3f7aa25cd4e2a0cb1c74575ea19d2202c6a915c5d85d14663 |