Skip to main content

Python plotting package

Project description

PyPi Conda Downloads NUMFocus

Discourse help forum Gitter GitHub issues Contributing

GitHub actions status Azure pipelines status AppVeyor status Codecov status

Matplotlib logotype

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Check out our home page for more information.

image

Matplotlib produces publication-quality figures in a variety of hardcopy formats and interactive environments across platforms. Matplotlib can be used in Python scripts, Python/IPython shells, web application servers, and various graphical user interface toolkits.

Install

See the install documentation, which is generated from /doc/users/installing/index.rst

Contribute

You've discovered a bug or something else you want to change — excellent!

You've worked out a way to fix it — even better!

You want to tell us about it — best of all!

Start at the contributing guide!

Contact

Discourse is the discussion forum for general questions and discussions and our recommended starting point.

Our active mailing lists (which are mirrored on Discourse) are:

Gitter is for coordinating development and asking questions directly related to contributing to matplotlib.

Citing Matplotlib

If Matplotlib contributes to a project that leads to publication, please acknowledge this by citing Matplotlib.

A ready-made citation entry is available.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

matplotlib-3.8.0rc1.tar.gz (35.9 MB view details)

Uploaded Source

Built Distributions

matplotlib-3.8.0rc1-pp39-pypy39_pp73-win_amd64.whl (7.6 MB view details)

Uploaded PyPy Windows x86-64

matplotlib-3.8.0rc1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.7 MB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

matplotlib-3.8.0rc1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl (7.5 MB view details)

Uploaded PyPy macOS 10.12+ x86-64

matplotlib-3.8.0rc1-cp311-cp311-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.11 Windows x86-64

matplotlib-3.8.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

matplotlib-3.8.0rc1-cp311-cp311-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

matplotlib-3.8.0rc1-cp311-cp311-macosx_10_12_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.11 macOS 10.12+ x86-64

matplotlib-3.8.0rc1-cp310-cp310-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.10 Windows x86-64

matplotlib-3.8.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

matplotlib-3.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

matplotlib-3.8.0rc1-cp310-cp310-macosx_10_12_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.10 macOS 10.12+ x86-64

matplotlib-3.8.0rc1-cp39-cp39-win_amd64.whl (7.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

matplotlib-3.8.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl (9.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (11.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (11.4 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

matplotlib-3.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl (7.5 MB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

matplotlib-3.8.0rc1-cp39-cp39-macosx_10_12_x86_64.whl (7.6 MB view details)

Uploaded CPython 3.9 macOS 10.12+ x86-64

File details

Details for the file matplotlib-3.8.0rc1.tar.gz.

File metadata

  • Download URL: matplotlib-3.8.0rc1.tar.gz
  • Upload date:
  • Size: 35.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.0

File hashes

Hashes for matplotlib-3.8.0rc1.tar.gz
Algorithm Hash digest
SHA256 09948ad848fa096b2f604c042e287dace94af2a0968425cf2564b1baa9e09e22
MD5 fbc2980e61013b65f8f7bfd085c79251
BLAKE2b-256 a5f8eff7a5529d85f64d8190818d97203ac1de65451f3c6848036bbcac4234d3

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-pp39-pypy39_pp73-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-pp39-pypy39_pp73-win_amd64.whl
Algorithm Hash digest
SHA256 d2f5cc5b2f0bdbe57924ced808087b9297b9fb235e5dcfb436eee2fbdb14c23e
MD5 deb8fd8eb24846656649d92646f39d18
BLAKE2b-256 b764d3d1aae6040bfe5e1711eaceb87a08c3715ea1fe3b4a0b05b6d04fccace2

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a142024ec031136e8a82c0061d31139a2374e14d3615451012e3abb3bce1d343
MD5 dc12035f5eeca16da1bb2ff30700dc5d
BLAKE2b-256 07b17303bcf03189f035ec141fe2266281be7f96292803071aa39ab9a6c3cc17

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-pp39-pypy39_pp73-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 f78c40a01e2d79cd5cffab209cffc9272bad77b40852fdb25eb2f86f2da6236a
MD5 cc5bc4d82ae886fdef083cb10afb0fcf
BLAKE2b-256 6137a32a77bd82a9ec65e12936607d687ac3f7dfb9a9608bcd38ec7f53fc8346

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b7ed3d6c1d06d6b213689eb84c5e1346c9c448861f1a5b517efaedf2b75c6a63
MD5 bdfd142267b6094a37adb7935fa8c3ae
BLAKE2b-256 cfb8b1c975ee4522b83895c13602516e04a8683d89bd179766a7451de06752af

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 0a106cffe9e0fda509b8a8767893fd178ebd156b8c6e8ae39107875e79496b89
MD5 1893dee1317635515e32ec56dd491e75
BLAKE2b-256 e4942e341b9ab39ca0aefabb2e933716ae4319ed8a340524ee8c974a09c33d3a

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2edbae2012cbe5333f2004efd3e2280adde7213d51d660db31431e3e7af99934
MD5 5787b94eee420b24f5e58f57f24884fd
BLAKE2b-256 b711cad15f28ac27fdf6ff934ef9ec234b3de901a5d92bdc5b89cd58260a6f72

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ecb1bf0132b4ff76aa36eb7b8f2f5e2bc0ba8545ca1c27cd483fec2db0f74f9
MD5 3e0a3ec9c71124e65f6a1b9e3961a98d
BLAKE2b-256 d0d8ae9cf32cfd131e0dc1ee14117bb1c5749d2e190791eb24f3f561ffe7b606

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2033d5a089ac2bd4c94f403bb086570fc8d037ea1bf7add6a598a9c927307659
MD5 ed11b19d8ae348c72f478b5668c834ba
BLAKE2b-256 e7a069f8b1c273a7a75da9a9a74fb1c3467f9ea9ea968461b8093523d0436d4c

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp311-cp311-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp311-cp311-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 a5e4ac18a59c0a95e569591e25bd7b12e0ff5afa0a820a0144927a7cbae6896d
MD5 402f126e67e5989806d1db2ef8d8dfb9
BLAKE2b-256 f4e010f5a7ff7a44c3675f4e9f3bd7068e8684dd56c5f506b40f0ab6cb75c149

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 c179f7d28345888721dee4d2d76e970b3bdb10836ce41adbabe54b4b1ce56e36
MD5 a664c663e3b1b80dd0f8fc607aa7d06f
BLAKE2b-256 0210a89b1f3b5b3e4daea41e16c9e1badd04d7a1293a011d6e80f88f89e7f1c3

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 8224c1e942b797123da96ea708f76e0d0570a9af768899a3756ebfd8dedf8eca
MD5 b185333a0f8e44baf11c51f5fb8ec988
BLAKE2b-256 eb2e6966ccf1cbfcd9c8c44dd94c562860846163d2e6a763f4154054b23e0b81

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 730cefef0ef9a757ba69f014aa26866d8d7e1bee35cc76c27d17985947f68c65
MD5 cfcc7d9fd3c48f1e9ff534e650c3911f
BLAKE2b-256 59505f9999c9085f69e654cf8e9543d178c578457f06d6a0451904893d7984a6

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4e60cd340ef20ac91fb1bf63de7714bb6e75d3a497cdfae8fef4b52c5fb90cdc
MD5 75d8b3cb34f43ad67d4e60c1cfd2a734
BLAKE2b-256 2034261830ce797eb47ea74799bc0cc8098d75c891812a9da3b235c7c198e431

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 5710e4c681167d7035d0428a2fbae817ddb85f8e9ca3ad9fe657d5c58578f2dc
MD5 bdcbdbfa3e98fc2778674673c17ad6ad
BLAKE2b-256 a18bb12e6905e3859cf96a9593d3c715e9e244edeea74a18f573eba9ea322e81

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp310-cp310-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp310-cp310-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 41efefecdae6b86fb3e180e6014722f1294e7cffd388ad758e17fd82459a3230
MD5 c0817d39e48afe1afacea7136b5ea33f
BLAKE2b-256 5d15890c85212c349ab16033e672ae51b693919d0474560f6f34f1cd7dd25b8f

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6a6cd7649f9f2faca948baea0e4d9e2d3d25326e091feb5fb5263033eb694f7c
MD5 e3143205dd4ad00dc014271b9460115c
BLAKE2b-256 5dbb921955d6b9ca013db73f8ab03fdb481d64bb6c528ed53f44a088a1a3b0a3

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 27a15e0694c65da85bd4591d2c763b6f9997f8290915e7c760aa508444e2f621
MD5 3cc485f5093b74cc04b4b198c8362594
BLAKE2b-256 f4cb44b4be1e63a466f68bfbc7d9311db7a043932132772aa2b03f8c4df97527

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 76acf0912d341bed46201b1fd33587fcce0e99ba7dbd9249eabfbf7a9b0d813e
MD5 db14047fee3813ebfcb0733367635f72
BLAKE2b-256 51ce5d08045689fbf933cb4481913e1320f8d9a8a1da8674ce2fb4a0cf020c52

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 63114cdf9dc2654f9a3db6a341f36c9775ae52df0476cc12a60a5867e67240bf
MD5 cfeef1f9413600933768837104c1d814
BLAKE2b-256 290861c6114e18fc9bc23b95fa6402b1106202089c41599e7f77cd65529ebebb

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6f694f1ee70dc78eb0928914d431c3c4a7312355aeb2345134d5eace340a3464
MD5 b2377093b6a6d7efc3b2e05e718f954d
BLAKE2b-256 32192fe96e1c34f7b3933e46231ed8f7fdff5c059d7944dcf5490616779defe1

See more details on using hashes here.

Provenance

File details

Details for the file matplotlib-3.8.0rc1-cp39-cp39-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for matplotlib-3.8.0rc1-cp39-cp39-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 6764520d734b466f03bc7bd2435c4d67272656d2d017050fdae60c79a79045bb
MD5 5317f43904cbc3a6c510367ef5f06020
BLAKE2b-256 1318b4624de7ef871fabc7e52e04cf3026341b6c13156f9188cdc46e8088e437

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page