Skip to main content

Build and publish crates with pyo3, cffi and uniffi bindings as well as rust binaries as python packages

Project description

Maturin

formerly pyo3-pack

Maturin User Guide Crates.io PyPI Actions Status FreeBSD discord server

Build and publish crates with pyo3, cffi and uniffi bindings as well as rust binaries as python packages with minimal configuration. It supports building wheels for python 3.8+ on windows, linux, mac and freebsd, can upload them to pypi and has basic pypy and graalpy support.

Check out the User Guide!

Usage

You can either download binaries from the latest release or install it with pipx:

pipx install maturin

[!NOTE]

pip install maturin should also work if you don't want to use pipx.

There are four main commands:

  • maturin new creates a new cargo project with maturin configured.
  • maturin publish builds the crate into python packages and publishes them to pypi.
  • maturin build builds the wheels and stores them in a folder (target/wheels by default), but doesn't upload them. It's possible to upload those with twine or maturin upload.
  • maturin develop builds the crate and installs it as a python module directly in the current virtualenv. Note that while maturin develop is faster, it doesn't support all the feature that running pip install after maturin build supports.

pyo3 bindings are automatically detected. For cffi or binaries, you need to pass -b cffi or -b bin. maturin doesn't need extra configuration files and doesn't clash with an existing setuptools-rust or milksnake configuration. You can even integrate it with testing tools such as tox. There are examples for the different bindings in the test-crates folder.

The name of the package will be the name of the cargo project, i.e. the name field in the [package] section of Cargo.toml. The name of the module, which you are using when importing, will be the name value in the [lib] section (which defaults to the name of the package). For binaries, it's simply the name of the binary generated by cargo.

Python packaging basics

Python packages come in two formats: A built form called wheel and source distributions (sdist), both of which are archives. A wheel can be compatible with any python version, interpreter (cpython and pypy, mainly), operating system and hardware architecture (for pure python wheels), can be limited to a specific platform and architecture (e.g. when using ctypes or cffi) or to a specific python interpreter and version on a specific architecture and operating system (e.g. with pyo3).

When using pip install on a package, pip tries to find a matching wheel and install that. If it doesn't find one, it downloads the source distribution and builds a wheel for the current platform, which requires the right compilers to be installed. Installing a wheel is much faster than installing a source distribution as building wheels is generally slow.

When you publish a package to be installable with pip install, you upload it to pypi, the official package repository. For testing, you can use test pypi instead, which you can use with pip install --index-url https://test.pypi.org/simple/. Note that for publishing for linux, you need to use the manylinux docker container, while for publishing from your repository you can use the PyO3/maturin-action github action.

pyo3

For pyo3, maturin can only build packages for installed python versions. On linux and mac, all python versions in PATH are used. If you don't set your own interpreters with -i, a heuristic is used to search for python installations. On windows all versions from the python launcher (which is installed by default by the python.org installer) and all conda environments except base are used. You can check which versions are picked up with the list-python subcommand.

pyo3 will set the used python interpreter in the environment variable PYTHON_SYS_EXECUTABLE, which can be used from custom build scripts. Maturin can build and upload wheels for pypy with pyo3, even though only pypy3.7-7.3 on linux is tested.

Cffi

Cffi wheels are compatible with all python versions including pypy. If cffi isn't installed and python is running inside a virtualenv, maturin will install it, otherwise you have to install it yourself (pip install cffi).

maturin uses cbindgen to generate a header file, which can be customized by configuring cbindgen through a cbindgen.toml file inside your project root. Alternatively you can use a build script that writes a header file to $PROJECT_ROOT/target/header.h.

Based on the header file maturin generates a module which exports an ffi and a lib object.

Example of a custom build script
use cbindgen;
use std::env;
use std::path::Path;

fn main() {
    let crate_dir = env::var("CARGO_MANIFEST_DIR").unwrap();

    let bindings = cbindgen::Builder::new()
        .with_no_includes()
        .with_language(cbindgen::Language::C)
        .with_crate(crate_dir)
        .generate()
        .unwrap();
    bindings.write_to_file(Path::new("target").join("header.h"));
}

uniffi

uniffi bindings use uniffi-rs to generate Python ctypes bindings from an interface definition file. uniffi wheels are compatible with all python versions including pypy.

Mixed rust/python projects

To create a mixed rust/python project, create a folder with your module name (i.e. lib.name in Cargo.toml) next to your Cargo.toml and add your python sources there:

my-project
├── Cargo.toml
├── my_project
│   ├── __init__.py
│   └── bar.py
├── pyproject.toml
├── README.md
└── src
    └── lib.rs

You can specify a different python source directory in pyproject.toml by setting tool.maturin.python-source, for example

pyproject.toml

[tool.maturin]
python-source = "python"
module-name = "my_project._lib_name"

then the project structure would look like this:

my-project
├── Cargo.toml
├── python
│   └── my_project
│       ├── __init__.py
│       └── bar.py
├── pyproject.toml
├── README.md
└── src
    └── lib.rs

[!NOTE]

This structure is recommended to avoid a common ImportError pitfall

maturin will add the native extension as a module in your python folder. When using develop, maturin will copy the native library and for cffi also the glue code to your python folder. You should add those files to your gitignore.

With cffi you can do from .my_project import lib and then use lib.my_native_function, with pyo3 you can directly from .my_project import my_native_function.

Example layout with pyo3 after maturin develop:

my-project
├── Cargo.toml
├── my_project
│   ├── __init__.py
│   ├── bar.py
│   └── _lib_name.cpython-36m-x86_64-linux-gnu.so
├── README.md
└── src
    └── lib.rs

When doing this also be sure to set the module name in your code to match the last part of module-name (don't include the package path):

#[pymodule]
#[pyo3(name="_lib_name")]
fn my_lib_name(_py: Python<'_>, m: &PyModule) -> PyResult<()> {
    m.add_class::<MyPythonRustClass>()?;
    Ok(())
}

Python metadata

maturin supports PEP 621, you can specify python package metadata in pyproject.toml. maturin merges metadata from Cargo.toml and pyproject.toml, pyproject.toml takes precedence over Cargo.toml.

To specify python dependencies, add a list dependencies in a [project] section in the pyproject.toml. This list is equivalent to install_requires in setuptools:

[project]
name = "my-project"
dependencies = ["flask~=1.1.0", "toml==0.10.0"]

Pip allows adding so called console scripts, which are shell commands that execute some function in your program. You can add console scripts in a section [project.scripts]. The keys are the script names while the values are the path to the function in the format some.module.path:class.function, where the class part is optional. The function is called with no arguments. Example:

[project.scripts]
get_42 = "my_project:DummyClass.get_42"

You can also specify trove classifiers in your pyproject.toml under project.classifiers:

[project]
name = "my-project"
classifiers = ["Programming Language :: Python"]

Source distribution

maturin supports building through pyproject.toml. To use it, create a pyproject.toml next to your Cargo.toml with the following content:

[build-system]
requires = ["maturin>=1.0,<2.0"]
build-backend = "maturin"

If a pyproject.toml with a [build-system] entry is present, maturin can build a source distribution of your package when --sdist is specified. The source distribution will contain the same files as cargo package. To only build a source distribution, pass --interpreter without any values.

You can then e.g. install your package with pip install .. With pip install . -v you can see the output of cargo and maturin.

You can use the options compatibility, skip-auditwheel, bindings, strip and common Cargo build options such as features under [tool.maturin] the same way you would when running maturin directly. The bindings key is required for cffi and bin projects as those can't be automatically detected. Currently, all builds are in release mode (see this thread for details).

For a non-manylinux build with cffi bindings you could use the following:

[build-system]
requires = ["maturin>=1.0,<2.0"]
build-backend = "maturin"

[tool.maturin]
bindings = "cffi"
compatibility = "linux"

manylinux option is also accepted as an alias of compatibility for backward compatibility with old version of maturin.

To include arbitrary files in the sdist for use during compilation specify include as an array of path globs with format set to sdist:

[tool.maturin]
include = [{ path = "path/**/*", format = "sdist" }]

There's a maturin sdist command for only building a source distribution as workaround for pypa/pip#6041.

Manylinux and auditwheel

For portability reasons, native python modules on linux must only dynamically link a set of very few libraries which are installed basically everywhere, hence the name manylinux. The pypa offers special docker images and a tool called auditwheel to ensure compliance with the manylinux rules. If you want to publish widely usable wheels for linux pypi, you need to use a manylinux docker image.

The Rust compiler since version 1.64 requires at least glibc 2.17, so you need to use at least manylinux2014. For publishing, we recommend enforcing the same manylinux version as the image with the manylinux flag, e.g. use --manylinux 2014 if you are building in quay.io/pypa/manylinux2014_x86_64. The PyO3/maturin-action github action already takes care of this if you set e.g. manylinux: 2014.

maturin contains a reimplementation of auditwheel automatically checks the generated library and gives the wheel the proper platform tag. If your system's glibc is too new or you link other shared libraries, it will assign the linux tag. You can also manually disable those checks and directly use native linux target with --manylinux off.

For full manylinux compliance you need to compile in a CentOS docker container. The pyo3/maturin image is based on the manylinux2014 image, and passes arguments to the maturin binary. You can use it like this:

docker run --rm -v $(pwd):/io ghcr.io/pyo3/maturin build --release  # or other maturin arguments

Note that this image is very basic and only contains python, maturin and stable rust. If you need additional tools, you can run commands inside the manylinux container. See konstin/complex-manylinux-maturin-docker for a small educational example or nanoporetech/fast-ctc-decode for a real world setup.

maturin itself is manylinux compliant when compiled for the musl target.

Examples

  • ballista-python - A Python library that binds to Apache Arrow distributed query engine Ballista
  • bleuscore - A BLEU score calculation library, written in pure Rust
  • chardetng-py - Python binding for the chardetng character encoding detector.
  • connector-x - ConnectorX enables you to load data from databases into Python in the fastest and most memory efficient way
  • datafusion-python - a Python library that binds to Apache Arrow in-memory query engine DataFusion
  • deltalake-python - Native Delta Lake Python binding based on delta-rs with Pandas integration
  • opendal - OpenDAL Python Binding to access data freely
  • orjson - A fast, correct JSON library for Python
  • polars - Fast multi-threaded DataFrame library in Rust | Python | Node.js
  • pydantic-core - Core validation logic for pydantic written in Rust
  • pyrus-cramjam - Thin Python wrapper to de/compression algorithms in Rust
  • pyxel - A retro game engine for Python
  • roapi - ROAPI automatically spins up read-only APIs for static datasets without requiring you to write a single line of code
  • robyn - A fast and extensible async python web server with a Rust runtime
  • ruff - An extremely fast Python linter, written in Rust
  • tantivy-py - Python bindings for Tantivy
  • watchfiles - Simple, modern and high performance file watching and code reload in python
  • wonnx - Wonnx is a GPU-accelerated ONNX inference run-time written 100% in Rust

Contributing

Everyone is welcomed to contribute to maturin! There are many ways to support the project, such as:

  • help maturin users with issues on GitHub and Gitter
  • improve documentation
  • write features and bugfixes
  • publish blogs and examples of how to use maturin

Our contributing notes have more resources if you wish to volunteer time for maturin and are searching where to start.

If you don't have time to contribute yourself but still wish to support the project's future success, some of our maintainers have GitHub sponsorship pages:

License

Licensed under either of:

at your option.

Project details


Release history Release notifications | RSS feed

This version

1.6.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maturin-1.6.0.tar.gz (187.9 kB view details)

Uploaded Source

Built Distributions

maturin-1.6.0-py3-none-win_arm64.whl (6.2 MB view details)

Uploaded Python 3 Windows ARM64

maturin-1.6.0-py3-none-win_amd64.whl (7.3 MB view details)

Uploaded Python 3 Windows x86-64

maturin-1.6.0-py3-none-win32.whl (6.5 MB view details)

Uploaded Python 3 Windows x86

maturin-1.6.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl (11.8 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ s390x

maturin-1.6.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.musllinux_1_1_ppc64le.whl (8.6 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ppc64le musllinux: musl 1.1+ ppc64le

maturin-1.6.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.musllinux_1_1_armv7l.whl (9.9 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARMv7l musllinux: musl 1.1+ ARMv7l

maturin-1.6.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl (9.8 MB view details)

Uploaded Python 3 manylinux: glibc 2.17+ ARM64 musllinux: musl 1.1+ ARM64

maturin-1.6.0-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.musllinux_1_1_x86_64.whl (10.3 MB view details)

Uploaded Python 3 manylinux: glibc 2.12+ x86-64 musllinux: musl 1.1+ x86-64

maturin-1.6.0-py3-none-manylinux_2_12_i686.manylinux2010_i686.musllinux_1_1_i686.whl (10.4 MB view details)

Uploaded Python 3 manylinux: glibc 2.12+ i686 musllinux: musl 1.1+ i686

maturin-1.6.0-py3-none-macosx_10_12_x86_64.whl (8.1 MB view details)

Uploaded Python 3 macOS 10.12+ x86-64

maturin-1.6.0-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl (15.8 MB view details)

Uploaded Python 3 macOS 10.12+ universal2 (ARM64, x86-64) macOS 10.12+ x86-64 macOS 11.0+ ARM64

maturin-1.6.0-py3-none-linux_armv6l.whl (10.0 MB view details)

Uploaded Python 3

File details

Details for the file maturin-1.6.0.tar.gz.

File metadata

  • Download URL: maturin-1.6.0.tar.gz
  • Upload date:
  • Size: 187.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for maturin-1.6.0.tar.gz
Algorithm Hash digest
SHA256 b955025c24c8babc808db49e0ff90db8b4b1320dcc16b14eb26132841737230d
MD5 40b235d2fefc111aad969dfac3b6d6a2
BLAKE2b-256 5dd5c20153a0719d169a2211651b0a3d9aa126805175a84407392a6367f73b3c

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-win_arm64.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-win_arm64.whl
Algorithm Hash digest
SHA256 50133965e52d8b5b969381fee3fde111ae2383905cdaba7650f256e08ccddcd4
MD5 057cacc159a6d2e400fe68cd82be4a85
BLAKE2b-256 c031a39c7d2821d417f96342f4166e5f23b64d43cdae673601713afc9629ca4e

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-win_amd64.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-win_amd64.whl
Algorithm Hash digest
SHA256 a2a2436628c36d98dabd79b52256df7e12fc4fd1b122984d9373fdf918fd4609
MD5 e12ea7a54b6ed46f246e57ea8f47ce5c
BLAKE2b-256 28b08ab015a76e85a707371219fdb132748cb285e01c77f0e766a94d660561bd

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-win32.whl.

File metadata

  • Download URL: maturin-1.6.0-py3-none-win32.whl
  • Upload date:
  • Size: 6.5 MB
  • Tags: Python 3, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: maturin/1.5.1

File hashes

Hashes for maturin-1.6.0-py3-none-win32.whl
Algorithm Hash digest
SHA256 c87d1a7596c42b589099adb831343a56e02373588366e4cede96cbdf8bd68f9d
MD5 f55fe37346ebfa9d8f19f2b7f49d285b
BLAKE2b-256 c69b71eb5b196371fbbc969e6056b69f231576904a2eeca422e68caf88ad19c8

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl
Algorithm Hash digest
SHA256 4e931c92037128ade49cd26dd040d9c46ad8092d8170cc44f5c3a0b4a052d576
MD5 a76aee8e2dbf3ec684f36904d205f810
BLAKE2b-256 9cef350b2ab5557acd90dc081a2bec7845ef992d868c26b15cf54f43ef147c36

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.musllinux_1_1_ppc64le.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.musllinux_1_1_ppc64le.whl
Algorithm Hash digest
SHA256 16ef860df20028618b5a064da06b02c1c47acba064a4d25aaf84662a459ec599
MD5 90300fc1cf9f143caeff30439e60be51
BLAKE2b-256 dce1bbc959d0af4eec0531a2a20e6a64f9054a1462942de05fb1bdfffb854df3

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.musllinux_1_1_armv7l.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.musllinux_1_1_armv7l.whl
Algorithm Hash digest
SHA256 aa4eb7dca7d246b466392f21016f67ff09a9aff2305fa714ca25a2344e4639e7
MD5 182beaf5acd623ada44ae8c93ae1bba7
BLAKE2b-256 deb7ee50815de8b25f9e95070780fc56a97844e28072c23d4b08e35bc186a408

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.musllinux_1_1_aarch64.whl
Algorithm Hash digest
SHA256 d67ca8dc7f3b2314bd3bf83c4de52645e220ee312fd526e53acc6a735f233fad
MD5 78efb8b1035127e5f6e27f4a433984bc
BLAKE2b-256 37a883dc94a4b5959ced19354fcce404107221d1f7460c9e28f61ea61bfa8ac9

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_12_x86_64.manylinux2010_x86_64.musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 d92b045e90ed919a8a2520dda64e3f384e5e746ea51e1498cc6ac3e9e5c76054
MD5 6d715146927d3dd0b179b4dd89fc3232
BLAKE2b-256 9502572c1f2aed8a94da5cbc6037b935130491542845167dac8fd34936dfff29

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-manylinux_2_12_i686.manylinux2010_i686.musllinux_1_1_i686.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-manylinux_2_12_i686.manylinux2010_i686.musllinux_1_1_i686.whl
Algorithm Hash digest
SHA256 dbbbf25dc3c207b0a7bd4f3aea1df33d4f22b8508592796a6f36f4d8ed216db0
MD5 d22242a1583596a18afdcc977986e92e
BLAKE2b-256 58b2c896befa0e3d17804c0ad6bb7f4a563ca0f316b34f5902dd9e41aa6d68da

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-macosx_10_12_x86_64.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-macosx_10_12_x86_64.whl
Algorithm Hash digest
SHA256 337899784955934dd67b30497d1dd5fab22da89f60bb079dbaf2eaa446b97a10
MD5 58ee7ffb04923db0bbdd88b1840bb132
BLAKE2b-256 db69584da939e60dcd7a1591a1f8c70a3dcae569247008ec9bb3ace12d232465

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-macosx_10_12_x86_64.macosx_11_0_arm64.macosx_10_12_universal2.whl
Algorithm Hash digest
SHA256 bd85edcb1b8e2bcddc1b7d16ce58ce00a66aa80c422745c8ad9e132ac40d4b48
MD5 adb2e01671df12d3b3a7aa81f48b7335
BLAKE2b-256 9880493ea56582e84e17af1262bc69d74882cd8c0f9c2fa7446ca35fb3edeaff

See more details on using hashes here.

File details

Details for the file maturin-1.6.0-py3-none-linux_armv6l.whl.

File metadata

File hashes

Hashes for maturin-1.6.0-py3-none-linux_armv6l.whl
Algorithm Hash digest
SHA256 d8620970bd0b6a0acb99dbd0b1c2ebb7a69909d25f6023bdff9635a39001aa51
MD5 4c0904a9837a28d1212976ad5fc69c49
BLAKE2b-256 4cfc7e294b8bf723655253e12751985bedb8fc772c85945a8c35b44f25fac90d

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page