Skip to main content

Stochastic Edit Distance aligner for string transduction

Project description

Maxwell 👹

PyPI version Supported Python versions CircleCI

Maxwell is a Python library for learning the stochastic edit distance (SED) between source and target alphabets for string transduction.

Given a corpus of source and target string pairs, it uses expectation-maximization to learn the log-probability weights of edit actions (copy, substitution, deletion, insertion) that minimize the number of edits between source and target strings. These weights can then be used for edits over unknown strings through Viterbi decoding.

Install

First install dependencies:

pip install -r requirements.txt

Then install:

pip install .

It can then be imported like a regular Python module:

import maxwell

Usage

SED training can be done as either a command line tool or imported as a Python dependency.

For command-line use, run:

maxwell-train \
    --train /path/to/train/data \
    --output /path/to/output/file \
    --epochs "${NUM_EPOCHS}"

As a library object, you can use the StochasticEditDistance class to pass any iterable of source-target pairs for training. Learned edit weights can then be saved with the write_params method:

from maxwell import sed


aligner = sed.StochasticEditDistance.fit_from_data(
    training_samples, NUM_EPOCHS
)
aligner.params.write_params("/path/to/output/file")

After training, parameters can be loaded from file to calculate optimal edits between strings with the action_sequence method, which returns a tuple of the learned optimal sequence and the weight given to the sequence:

from maxwell import sed


params = sed.ParamsDict.read_params("/path/to/learned/parameters")
aligner = sed.StochasticEditDistance(params)
optimal_sequence, optimal_cost = aligner.action_sequence(source, target)

If only weight and no actions are required, action_sequence_cost can be called instead:

optimal_cost = aligner.action_sequence_cost(source, target)

Conversely, individual actions can be evaluated with the action_cost method:

action_cost = aligner.action_cost(action)

Details

Data

The default data format is based on the SIGMORPHON 2017 shared tasks:

source   target    ...

That is, the first column is the source (a lemma) and the second is the target.

In the case where the formatting is different, the --source-col and --target-col flags can be invoked. For instance, for the SIGMORPHON 2016 shared task data format:

source   ...    target

one would instead use the flag --target-col 3 to use the third column as target strings (note the use of 1-based indexing).

Edit actions

Edit weights are maintained as a ParamsDict object, a dataclass comprising three dictionaries and one floats. The dictionaries, and their indexing, are as follows:

  1. delta_sub Keys: Tuple of source alphabet X target alphabet. Values: Substitution weight for all non-equivalent source-target pairs. If source symbol == target symbol, a seperate copy probability is used.
  2. delta_del Keys: All symbols in source string alphabet. Represents deletion from string. Values: Deletion weight for removal of source symbol from string.
  3. delta_ins Keys: All symbols in target string alphabet. Represents insertion into string. Values: Insertion weight for introduction of target symbol into string.
  4. delta_eos A float value representing probability of terminating the string.

In Python, these values may be accessed through a StochasticEditDistance object's params attribute.

References

Dempster, A., Laird, N., and Rubin, D. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B 30(1): 1-38.

Ristad, E. S. and Yianilos, P. N. 1998. Learning string-edit distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(5): 522-532.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

maxwell-0.2.4.tar.gz (16.5 kB view details)

Uploaded Source

Built Distribution

maxwell-0.2.4-py3-none-any.whl (14.7 kB view details)

Uploaded Python 3

File details

Details for the file maxwell-0.2.4.tar.gz.

File metadata

  • Download URL: maxwell-0.2.4.tar.gz
  • Upload date:
  • Size: 16.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for maxwell-0.2.4.tar.gz
Algorithm Hash digest
SHA256 874de36badaba03b841e4e0ea1e71d626bc1d9c09ec9541471f51e7b0fddd2bf
MD5 916db67a289b30f9637a9e80fd9ce84b
BLAKE2b-256 1b0325a4cf718c31904a092a55a6d176e0398d16572d79fd4cc786590d20647f

See more details on using hashes here.

File details

Details for the file maxwell-0.2.4-py3-none-any.whl.

File metadata

  • Download URL: maxwell-0.2.4-py3-none-any.whl
  • Upload date:
  • Size: 14.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.10.8

File hashes

Hashes for maxwell-0.2.4-py3-none-any.whl
Algorithm Hash digest
SHA256 26d94b0a4a2b22b388de8ad9422d0b054f4ad15c3a8ec89b06c004624ac0cab3
MD5 156343f034ca0c162cb062b023691b5b
BLAKE2b-256 01b6fec45a83cc254915a66a5dd61494dc2a793b39d24a4c826ecba3f67709a5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page