Skip to main content

Customisable 3D benchmark for assessing generalisation in Reinforcement Learning.

Project description

MazeExplorer

MazeExplorer is a customisable 3D benchmark for assessing generalisation in Reinforcement Learning.

Simply put, MazeExplorer makes it easy to create separate training and test environments for your agents.

It is based on the 3D first-person game Doom and the open-source environment VizDoom.

This repository contains the code for the MazeExplorer Gym Environment along with the scripts to generate baseline results.

By Luke Harries*, Sebastian Lee*, Jaroslaw Rzepecki, Katja Hofmann, and Sam Devlin.
* Joint first author

Default textures Random Textures Random Textures

The Mission

The goal is to navigate a procedurally generated maze and collect a set number of keys.

The environment is highly customisable, allowing you to create different training and test environments.

The following features of the environment can be configured:

  • Unique or repeated maps
  • Number of maps
  • Map Size (X, Y)
  • Maze complexity
  • Maze density
  • Random/Fixed keys
  • Random/Fixed textures
  • Random/Fixed spawn
  • Number of keys
  • Environment Seed
  • Episode timeout
  • Reward clipping
  • Frame stack
  • Resolution
  • Action frame repeat
  • Actions space
  • Specific textures (Wall, ceiling, floor)
  • Data Augmentation

Example Usage

from mazeexplorer import MazeExplorer

train_env = MazeExplorer(number_maps=1,
              size=(15, 15),
              random_spawn=True,
              random_textures=False,
              keys=6)

test_env = MazeExplorer(number_maps=1,
              size=(15, 15),
              random_spawn=True,
              random_textures=False,
              keys=6)

# training
for _ in range(1000):
    obs, rewards, dones, info = train_env.step(train_env.action_space.sample())


# testing
for _ in range(1000):
    obs, rewards, dones, info = test_env.step(test_env.action_space.sample())

Installation

  1. Install the dependencies for VizDoom: Linux, MacOS or Windows.
  2. pip3 install virtualenv pytest
  3. Create a virtualenv and activate it
    1. virtualenv mazeexplorer-env
    2. source maze-env/bin/activate
  4. Git clone this repo git clone https://github.com/microsoft/MazeExplorer
  5. cd into the repo: cd MazeExplorer
  6. Pull the submodules with git submodule update --init --recursive
  7. Install the dependencies: pip3 install -e .
  8. Run the tests: bash test.sh

Baseline experiments

The information to reproduce the baseline experiments is shown in baseline_experiments/experiments.md.

Contributing

This project welcomes contributions and suggestions. Most contributions require you to agree to a Contributor License Agreement (CLA) declaring that you have the right to, and actually do, grant us the rights to use your contribution. For details, visit https://cla.microsoft.com.

When you submit a pull request, a CLA-bot will automatically determine whether you need to provide a CLA and decorate the PR appropriately (e.g., label, comment). Simply follow the instructions provided by the bot. You will only need to do this once across all repos using our CLA.

This project has adopted the Microsoft Open Source Code of Conduct. For more information see the Code of Conduct FAQ or contact opencode@microsoft.com with any additional questions or comments.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mazeexplorer-1.0.4.tar.gz (86.5 kB view details)

Uploaded Source

Built Distribution

mazeexplorer-1.0.4-py3-none-any.whl (99.8 kB view details)

Uploaded Python 3

File details

Details for the file mazeexplorer-1.0.4.tar.gz.

File metadata

  • Download URL: mazeexplorer-1.0.4.tar.gz
  • Upload date:
  • Size: 86.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mazeexplorer-1.0.4.tar.gz
Algorithm Hash digest
SHA256 b8ae7512af26230342ddb7e0aa78e62e811991d1d7b643acf21619c30b359a94
MD5 6c62186999c87c5ff9661024fa6002bf
BLAKE2b-256 2bbc5de204221406dca67068f51ccab826212523d0fe4c5377431a15fdb79997

See more details on using hashes here.

File details

Details for the file mazeexplorer-1.0.4-py3-none-any.whl.

File metadata

  • Download URL: mazeexplorer-1.0.4-py3-none-any.whl
  • Upload date:
  • Size: 99.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.2 CPython/3.7.3

File hashes

Hashes for mazeexplorer-1.0.4-py3-none-any.whl
Algorithm Hash digest
SHA256 68b4f7f66090b47c10c3267b3cd166de3c083e86d8354799393c5a564b40e4fa
MD5 76e47e8cdb0ec37cb262ee730a2cc736
BLAKE2b-256 63dcb98a517c908cfccabbbc07aca68b29ea68433a275875a585521d5711f43e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page