Skip to main content

A Python library for a learning health system

Project description

medkit

medkit logo

CI docs status pre-commit status test: status
Package PyPI version PyPI Python versions
Project License: MIT Formatter: Ruff Project: Hatch

medkit is a toolkit for a learning health system, developed by the HeKA research team.

This python library aims at:

  1. Facilitating the manipulation of healthcare data of various modalities (e.g., structured, text, audio data) for the extraction of relevant features.

  2. Developing supervised models from these various modalities for decision support in healthcare.

Installation

To install medkit with basic functionalities:

pip install medkit-lib

To install medkit with all its optional features:

pip install 'medkit-lib[all]'

Example

A basic named-entity recognition pipeline using medkit:

# 1. Define individual operations.
from medkit.text.preprocessing import CharReplacer, LIGATURE_RULES, SIGN_RULES
from medkit.text.segmentation import SentenceTokenizer, SyntagmaTokenizer
from medkit.text.context.negation_detector import NegationDetector
from medkit.text.ner.hf_entity_matcher import HFEntityMatcher

# Preprocessing
char_replacer = CharReplacer(rules=LIGATURE_RULES + SIGN_RULES)
# Segmentation
sent_tokenizer = SentenceTokenizer(output_label="sentence")
synt_tokenizer = SyntagmaTokenizer(output_label="syntagma")
# Negation detection
neg_detector = NegationDetector(output_label="is_negated")
# Entity recognition
entity_matcher = HFEntityMatcher(model="my-BERT-model", attrs_to_copy=["is_negated"])

# 2. Combine operations into a pipeline.
from medkit.core.pipeline import Pipeline, PipelineStep

ner_pipeline = Pipeline(
    input_keys=["full_text"],
    output_keys=["entities"],
    steps=[
        PipelineStep(char_replacer, input_keys=["full_text"], output_keys=["clean_text"]),
        PipelineStep(sent_tokenizer, input_keys=["clean_text"], output_keys=["sentences"]),
        PipelineStep(synt_tokenizer, input_keys=["sentences"], output_keys=["syntagmas"]),
        PipelineStep(neg_detector, input_keys=["syntagmas"], output_keys=[]),
        PipelineStep(entity_matcher, input_keys=["syntagmas"], output_keys=["entities"]),
    ],
)

# 3. Run the NER pipeline on a BRAT document.
from medkit.io import BratInputConverter

docs = BratInputConverter().load(path="/path/to/dataset/")
entities = ner_pipeline.run([doc.raw_segment for doc in docs])

Getting started

To get started with medkit, please checkout our documentation.

This documentation also contains tutorials and examples showcasing the use of medkit for different tasks.

Contributing

Thank you for your interest into medkit !

We'll be happy to get your inputs !

If your problem has not been reported by another user, please open an issue, whether it's for:

  • reporting a bug,
  • discussing the current state of the code,
  • submitting a fix,
  • proposing new features,
  • or contributing to documentation, ...

If you want to propose a pull request, you can read CONTRIBUTING.md.

Contact

Feel free to contact us by sending an email to medkit-maintainers@inria.fr.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medkit_lib-0.15.0.tar.gz (680.8 kB view details)

Uploaded Source

Built Distribution

medkit_lib-0.15.0-py3-none-any.whl (285.8 kB view details)

Uploaded Python 3

File details

Details for the file medkit_lib-0.15.0.tar.gz.

File metadata

  • Download URL: medkit_lib-0.15.0.tar.gz
  • Upload date:
  • Size: 680.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for medkit_lib-0.15.0.tar.gz
Algorithm Hash digest
SHA256 20403babfeb50ccbae3cb30b1fd11c0078c03ab29572a523673eee2a428900dd
MD5 e43f64cfe9ec7ac70654f1a5341b836a
BLAKE2b-256 4edb389cd8028110bafcc909c74aea711d15836166cc7e0669d97c1e9ca143bd

See more details on using hashes here.

File details

Details for the file medkit_lib-0.15.0-py3-none-any.whl.

File metadata

  • Download URL: medkit_lib-0.15.0-py3-none-any.whl
  • Upload date:
  • Size: 285.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for medkit_lib-0.15.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e32fe51b89b7063cfcef4b399be983b5fd19f5bb3c646f2c5147add1ef2aa1ea
MD5 1332ba0802c26fb6fa193daaa89a60e1
BLAKE2b-256 fee3ae56dc68c8124f5bffa44be9676c34e5cb31ae777b3b225b8aea54331f29

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page