Skip to main content

A Python library for a learning health system

Project description

medkit

medkit logo

CI docs status pre-commit status test: status
Package PyPI version PyPI Python versions
Project License: MIT Formatter: Ruff Project: Hatch

medkit is a toolkit for a learning health system, developed by the HeKA research team.

This python library aims at:

  1. Facilitating the manipulation of healthcare data of various modalities (e.g., structured, text, audio data) for the extraction of relevant features.

  2. Developing supervised models from these various modalities for decision support in healthcare.

Installation

To install medkit with basic functionalities:

pip install medkit-lib

To install medkit with all its optional features:

pip install 'medkit-lib[all]'

Example

A basic named-entity recognition pipeline using medkit:

# 1. Define individual operations.
from medkit.text.preprocessing import CharReplacer, LIGATURE_RULES, SIGN_RULES
from medkit.text.segmentation import SentenceTokenizer, SyntagmaTokenizer
from medkit.text.context.negation_detector import NegationDetector
from medkit.text.ner.hf_entity_matcher import HFEntityMatcher

# Preprocessing
char_replacer = CharReplacer(rules=LIGATURE_RULES + SIGN_RULES)
# Segmentation
sent_tokenizer = SentenceTokenizer(output_label="sentence")
synt_tokenizer = SyntagmaTokenizer(output_label="syntagma")
# Negation detection
neg_detector = NegationDetector(output_label="is_negated")
# Entity recognition
entity_matcher = HFEntityMatcher(model="my-BERT-model", attrs_to_copy=["is_negated"])

# 2. Combine operations into a pipeline.
from medkit.core.pipeline import Pipeline, PipelineStep

ner_pipeline = Pipeline(
    input_keys=["full_text"],
    output_keys=["entities"],
    steps=[
        PipelineStep(char_replacer, input_keys=["full_text"], output_keys=["clean_text"]),
        PipelineStep(sent_tokenizer, input_keys=["clean_text"], output_keys=["sentences"]),
        PipelineStep(synt_tokenizer, input_keys=["sentences"], output_keys=["syntagmas"]),
        PipelineStep(neg_detector, input_keys=["syntagmas"], output_keys=[]),
        PipelineStep(entity_matcher, input_keys=["syntagmas"], output_keys=["entities"]),
    ],
)

# 3. Run the NER pipeline on a BRAT document.
from medkit.io import BratInputConverter

docs = BratInputConverter().load(path="/path/to/dataset/")
entities = ner_pipeline.run([doc.raw_segment for doc in docs])

Getting started

To get started with medkit, please checkout our documentation.

This documentation also contains tutorials and examples showcasing the use of medkit for different tasks.

Contributing

Thank you for your interest into medkit !

We'll be happy to get your inputs !

If your problem has not been reported by another user, please open an issue, whether it's for:

  • reporting a bug,
  • discussing the current state of the code,
  • submitting a fix,
  • proposing new features,
  • or contributing to documentation, ...

If you want to propose a pull request, you can read CONTRIBUTING.md.

Contact

Feel free to contact us by sending an email to medkit-maintainers@inria.fr.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

medkit_lib-0.16.0.tar.gz (681.2 kB view details)

Uploaded Source

Built Distribution

medkit_lib-0.16.0-py3-none-any.whl (286.0 kB view details)

Uploaded Python 3

File details

Details for the file medkit_lib-0.16.0.tar.gz.

File metadata

  • Download URL: medkit_lib-0.16.0.tar.gz
  • Upload date:
  • Size: 681.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for medkit_lib-0.16.0.tar.gz
Algorithm Hash digest
SHA256 c7462cd376cf0a682c64082e7d64a9645060ed8e468cbe5039a46397213a18bf
MD5 28aa43cec81d1eb951d6ee63a68aa7e4
BLAKE2b-256 18e88a2b4d2c4a0d5e0b065c1a533793bb687967e7c54295e7d685f3ebc1aea5

See more details on using hashes here.

File details

Details for the file medkit_lib-0.16.0-py3-none-any.whl.

File metadata

  • Download URL: medkit_lib-0.16.0-py3-none-any.whl
  • Upload date:
  • Size: 286.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for medkit_lib-0.16.0-py3-none-any.whl
Algorithm Hash digest
SHA256 568d40f3fa95faebb2caf5154410a43cb2c5e655dbad60fc2eb1d7fe51a3b5e8
MD5 3d3f84c45334ab979cf7ff85593c4881
BLAKE2b-256 61e96e003355047e7a3168ec08cc021efd5f6a626b45ceb1886ff8a127118429

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page