Skip to main content

Utilities for working with metaclasses.

Project description

Utilities for writing and composing metaclasses.

Template Model

Why do we need or want to write class templates.

Consider the two metaclasses.

class AllLower(type):
    def __new__(mcls, name, bases, dict_):
        dict_ = {k.lower(): v for k, v in dict_.items()}
        return super().__new__(mcls, name, bases, dict_)


class MethodCatcher(type):
    def __new__(mcls, name, bases, dict_):
        dict_['methods'] = [v for v in dict_.values() if callable(v)]
        return super().__new__(mcls, name, bases, dict_)

What would we do if we wanted to make a class that used BOTH of these metaclasses? Using a class that subclasses both AllLower and MethodCatcher does not work, what we want is a way to chain them.

With the class template model, we could have written our metaclasses as:

from metautils import T, templated

class AllLower(T):
    @templated
    def __new__(mcls, name, bases, dict_, T_):
        dict_ = {k.lower(): v for k, v in dict_.items()}
        return T_.__new__(mcls, name, bases, dict_)


class MethodCatcher(T):
    @templated
    def __new__(mcls, name, bases, dict_, T_):
        dict_['methods'] = [v for v in dict_.values() if callable(v)];
        return T_.__new__(mcls, name, bases, dict_)

Now we can define classes that use BOTH of these metaclasses like so:

class C(object, metaclass=MethodCatcher(AllLower())):
    def F():
        pass

    def g():
        pass

    a = 'a'
    B = 'b'

We can see that this applied the composition of the metaclasses.

>>> C.f
<function __main__.C.F>
>>> C.g
<function __main__.C.g>
>>> C.b
'b'
>>> C.a
'a'
>>> C.methods
[<function __main__.C.g>, <function __main__.C.F>]

The order that the metaclasses are composed is explicit as they act as transformers over each other.

Template

While the previous example only showed metaclasses, you can use this for any class; however, it is most useful for metaclasses where having a compatible metaclass heirarchy is hierarchy is important.

A Template is a callable that takes a type object and returns a new type object. It takes the following arguments:

  • base: A type object. default: type.

  • adjust_name: Should we prepend the name of the base to the new type object. default: True.

These can be chained together with any concrete metaclass at the end, e.g.:

new_class = m(n,p(q(...z(type)...)))

You can also use the compose function to do this:

from metautils import compose

new_class_template = compose(m, n, p, q, ..., z)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

metautils-0.1.0.tar.gz (6.6 kB view details)

Uploaded Source

File details

Details for the file metautils-0.1.0.tar.gz.

File metadata

  • Download URL: metautils-0.1.0.tar.gz
  • Upload date:
  • Size: 6.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for metautils-0.1.0.tar.gz
Algorithm Hash digest
SHA256 40211ff433d6e770631923fe37e09cb138d15197ea1ff24b444e1b8cdd7643af
MD5 ca17c2089c03b65437f01613cb68475e
BLAKE2b-256 2ad4297358f6a20ac78cb4f4343da60d3877d8d026328a121ece78da1929790b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page