functools.cache() for methods, done correctly
Project description
methodic_cache
functools.cache()
for methods, done correctly.
methodic_cache.cached_method
is a decorator that caches the return value of a method, based on the arguments passed to it.
The peculiarity of this library is that it does not store anything on objects themselves, but rather on a separate WeakKeyDictionary where the lifetime of the cache matches the lifetime of the object.
An advantage of this approach over storing the cache on the object itself when needed is that objects will keep their memory footprint smaller thanks to shared key dictionaries. See PEP 412 and The Dictionary Even Mightier - Brandon Rhodes at PyCon 2017, 00:21:02 for more details.
Features
- Simple to use
- Extendable with custom cache backends (e.g. LRUCache, LFUCache, etc.)
- Works with non-hashable objects
- Works with frozen/slotted classes
- Tested for memory leaks
Installation
pip install methodic_cache
Usage
from methodic_cache import cached_method
class MyClass:
@cached_method
def my_method(self, arg1, arg2):
return arg1 + arg2
my_obj = MyClass()
my_obj.my_method(1, 2) # returns 3
my_obj.my_method(1, 2) # returns 3 from the cache
Using classes with __slots__
Classes that define __slots__
need to have a __weakref__
slot to be able to be weakly referenced:
from methodic_cache import cached_method
class MyClass:
__slots__ = ("my_attr", "__weakref__") # <-- __weakref__ is required
def __init__(self, my_attr):
self.my_attr = my_attr
@cached_method
def my_method(self, arg1, arg2):
print(f"Computing {self.my_attr} + {arg1} + {arg2}...")
return self.my_attr + arg1 + arg2
my_obj = MyClass(1)
my_obj.my_method(2, 3)
# prints "Computing 1 + 2 + 3..."
# returns 6
my_obj.my_method(2, 3)
# returns 6
Custom cache backends
You can use any cache backend that implements the MutableMapping
interface (e.g. dict
, lru_cache
, functools.lru_cache
, etc.).
The default cache backend is cachetools.Cache(maxsize=math.inf)
, which will keep the cache bounded to the lifetime of the self
object.
You can use a different cache backend by passing it as the cache_factory
argument to cached_method
:
from methodic_cache import cached_method
from cachetools import LRUCache
class MyClass:
@cached_method(cache_factory=lambda: LRUCache(maxsize=1))
def my_method(self, arg1, arg2):
print(f"Computing {arg1} + {arg2}...")
return arg1 + arg2
my_obj = MyClass()
my_obj.my_method(1, 1)
# prints Computing 1 + 1...
# returns 2
my_obj.my_method(1, 1)
# returns 2
my_obj.my_method(2, 2)
# prints Computing 2 + 2...
# returns 4
my_obj.my_method(1, 1) # <-- this will be recomputed because the cache is full
# prints Computing 1 + 1...
# returns 2
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file methodic_cache-0.3.1.tar.gz
.
File metadata
- Download URL: methodic_cache-0.3.1.tar.gz
- Upload date:
- Size: 5.7 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.1 CPython/3.11.1 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 54b2355f49260673e73309634cb06d86e5b9c15bd7639967608a3e0424ba198a |
|
MD5 | f829b79187c9a051b0f7a34894f28064 |
|
BLAKE2b-256 | a52e7d191abcb41b0942e64096371b6fe4c942f6cfbac8b8a63a7cf32ebac293 |
File details
Details for the file methodic_cache-0.3.1-py3-none-any.whl
.
File metadata
- Download URL: methodic_cache-0.3.1-py3-none-any.whl
- Upload date:
- Size: 5.8 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: poetry/1.3.1 CPython/3.11.1 Darwin/22.3.0
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 81eae57ee826b735bdb5464efccdd4e6e09050e4e54e2d87bddf2ce705389fa2 |
|
MD5 | 6d7f11b2e664c9f92a449ecefebd7fcb |
|
BLAKE2b-256 | 256afbab1056959c57a0c7eb8482a8fc890aabaae7b9e82b28c1c1a889b04867 |