A set of tools in Python for multiscale graph correlation and other statistical tests
Project description
# mgcpy
[![Coverage Status](https://coveralls.io/repos/github/NeuroDataDesign/mgcpy/badge.svg?branch=master)](https://coveralls.io/github/NeuroDataDesign/mgcpy?branch=master)
[![Build Status](https://travis-ci.com/NeuroDataDesign/mgcpy.svg?branch=master)](https://travis-ci.com/NeuroDataDesign/mgcpy)
[![PyPI](https://img.shields.io/pypi/v/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![DOI](https://zenodo.org/badge/147731955.svg)](https://zenodo.org/badge/latestdoi/147731955)
[![Documentation Status](https://readthedocs.org/projects/mgcpy/badge/?version=latest)](https://mgcpy.readthedocs.io/en/latest/?badge=latest)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/)
<a href="https://codeclimate.com/github/NeuroDataDesign/mgcpy/maintainability"><img src="https://api.codeclimate.com/v1/badges/979888a65926b3f27971/maintainability" /></a>
`mgcpy` is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.
**Documentation:** https://mgcpy.readthedocs.io/en/latest/
## Installation Guide:
### Install from PyPi
```
pip3 install mgcpy
```
### Install from Github
```
git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
```
- `sudo`, if required
- `python3 setup.py build_ext --inplace # for cython`, if you want to test in-place, first execute this
## Setting up the development environment:
- To build image and run from scratch:
- Install [docker](https://docs.docker.com/install/)
- Build the docker image, `docker build -t mgcpy:latest .`
- This takes 20-30 mins to build
- Launch the container to go into mgcpy's dev env, `docker run -it --rm --name mgcpy-env mgcpy:latest`
- Pull image from Dockerhub and run:
- `docker pull tpsatish95/mgcpy:latest` or `docker pull tpsatish95/mgcpy:development`
- `docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`
- To run demo notebooks (from within Docker):
- `cd demos`
- `jupyter notebook --ip 0.0.0.0 --no-browser --allow-root`
- Then copy the url it generates, it looks something like this: `http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad`
- Edit this: `(0de284ecf0cd or 127.0.0.1)` to: `127.0.0.1`, in the above link and open it in your browser
- Then open `mgc.ipynb`
- To mount/load local files into docker container:
- Do `docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`, replace `<local_dir_path>` with your local dir path.
- Do `cd ../workspace` when you are inside the container to view the mounted files. The **mgcpy** package code will be in `/root/code` directory.
## MGC Algorithm's Flow
![MGCPY Flow](MGCPY.png)
## License
This project is covered under the **Apache 2.0 License**.
[![Coverage Status](https://coveralls.io/repos/github/NeuroDataDesign/mgcpy/badge.svg?branch=master)](https://coveralls.io/github/NeuroDataDesign/mgcpy?branch=master)
[![Build Status](https://travis-ci.com/NeuroDataDesign/mgcpy.svg?branch=master)](https://travis-ci.com/NeuroDataDesign/mgcpy)
[![PyPI](https://img.shields.io/pypi/v/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![DOI](https://zenodo.org/badge/147731955.svg)](https://zenodo.org/badge/latestdoi/147731955)
[![Documentation Status](https://readthedocs.org/projects/mgcpy/badge/?version=latest)](https://mgcpy.readthedocs.io/en/latest/?badge=latest)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/)
<a href="https://codeclimate.com/github/NeuroDataDesign/mgcpy/maintainability"><img src="https://api.codeclimate.com/v1/badges/979888a65926b3f27971/maintainability" /></a>
`mgcpy` is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.
**Documentation:** https://mgcpy.readthedocs.io/en/latest/
## Installation Guide:
### Install from PyPi
```
pip3 install mgcpy
```
### Install from Github
```
git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
```
- `sudo`, if required
- `python3 setup.py build_ext --inplace # for cython`, if you want to test in-place, first execute this
## Setting up the development environment:
- To build image and run from scratch:
- Install [docker](https://docs.docker.com/install/)
- Build the docker image, `docker build -t mgcpy:latest .`
- This takes 20-30 mins to build
- Launch the container to go into mgcpy's dev env, `docker run -it --rm --name mgcpy-env mgcpy:latest`
- Pull image from Dockerhub and run:
- `docker pull tpsatish95/mgcpy:latest` or `docker pull tpsatish95/mgcpy:development`
- `docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`
- To run demo notebooks (from within Docker):
- `cd demos`
- `jupyter notebook --ip 0.0.0.0 --no-browser --allow-root`
- Then copy the url it generates, it looks something like this: `http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad`
- Edit this: `(0de284ecf0cd or 127.0.0.1)` to: `127.0.0.1`, in the above link and open it in your browser
- Then open `mgc.ipynb`
- To mount/load local files into docker container:
- Do `docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`, replace `<local_dir_path>` with your local dir path.
- Do `cd ../workspace` when you are inside the container to view the mounted files. The **mgcpy** package code will be in `/root/code` directory.
## MGC Algorithm's Flow
![MGCPY Flow](MGCPY.png)
## License
This project is covered under the **Apache 2.0 License**.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distributions
File details
Details for the file mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg
.
File metadata
- Download URL: mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg
- Upload date:
- Size: 263.9 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 46948a9ed04e630de756355b3ffb7ff5956b85cf9274da2324da74c6893bf31d |
|
MD5 | 9a844e0d2ee7cf4577e170bd62c93458 |
|
BLAKE2b-256 | 6f11f477acd7c536dedcc12ed40fa1927ca95d5dcd0fb7da25c24614b300396e |
Provenance
File details
Details for the file mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl
.
File metadata
- Download URL: mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl
- Upload date:
- Size: 205.6 kB
- Tags: CPython 3.6m, macOS 10.13+ x86-64
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 64b53f13e2f74efce4fa53ed3bbba1c0f6ade03888f3a61c0465cd5b8aba7f18 |
|
MD5 | e4388519d293e96d1fd2772ecff66a94 |
|
BLAKE2b-256 | c0fef1ca04a7e0442603936a559853bf96cc2110d0c7c1ead05fd4d1ab869ddd |