Skip to main content

A set of tools in Python for multiscale graph correlation and other statistical tests

Project description

# mgcpy

[![Coverage Status](https://coveralls.io/repos/github/NeuroDataDesign/mgcpy/badge.svg?branch=master)](https://coveralls.io/github/NeuroDataDesign/mgcpy?branch=master)
[![Build Status](https://travis-ci.com/NeuroDataDesign/mgcpy.svg?branch=master)](https://travis-ci.com/NeuroDataDesign/mgcpy)
[![PyPI](https://img.shields.io/pypi/v/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![PyPI - Downloads](https://img.shields.io/pypi/dm/mgcpy.svg)](https://pypi-hypernode.com/project/mgcpy/)
[![DOI](https://zenodo.org/badge/147731955.svg)](https://zenodo.org/badge/latestdoi/147731955)
[![Documentation Status](https://readthedocs.org/projects/mgcpy/badge/?version=latest)](https://mgcpy.readthedocs.io/en/latest/?badge=latest)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![PEP8](https://img.shields.io/badge/code%20style-pep8-orange.svg)](https://www.python.org/dev/peps/pep-0008/)
<a href="https://codeclimate.com/github/NeuroDataDesign/mgcpy/maintainability"><img src="https://api.codeclimate.com/v1/badges/979888a65926b3f27971/maintainability" /></a>

`mgcpy` is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.

**Documentation:** https://mgcpy.readthedocs.io/en/latest/

## Installation Guide:

### Install from PyPi
```
pip3 install mgcpy
```

### Install from Github
```
git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
```
- `sudo`, if required
- `python3 setup.py build_ext --inplace # for cython`, if you want to test in-place, first execute this

## Setting up the development environment:
- To build image and run from scratch:
- Install [docker](https://docs.docker.com/install/)
- Build the docker image, `docker build -t mgcpy:latest .`
- This takes 20-30 mins to build
- Launch the container to go into mgcpy's dev env, `docker run -it --rm --name mgcpy-env mgcpy:latest`
- Pull image from Dockerhub and run:
- `docker pull tpsatish95/mgcpy:latest` or `docker pull tpsatish95/mgcpy:development`
- `docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`


- To run demo notebooks (from within Docker):
- `cd demos`
- `jupyter notebook --ip 0.0.0.0 --no-browser --allow-root`
- Then copy the url it generates, it looks something like this: `http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad`
- Edit this: `(0de284ecf0cd or 127.0.0.1)` to: `127.0.0.1`, in the above link and open it in your browser
- Then open `mgc.ipynb`

- To mount/load local files into docker container:
- Do `docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest`, replace `<local_dir_path>` with your local dir path.
- Do `cd ../workspace` when you are inside the container to view the mounted files. The **mgcpy** package code will be in `/root/code` directory.


## MGC Algorithm's Flow
![MGCPY Flow](MGCPY.png)

## License

This project is covered under the **Apache 2.0 License**.


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg (263.9 kB view details)

Uploaded Source

mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl (205.6 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg.

File metadata

  • Download URL: mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg
  • Upload date:
  • Size: 263.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for mgcpy-0.0.4-py3.6-macosx-10.13-x86_64.egg
Algorithm Hash digest
SHA256 46948a9ed04e630de756355b3ffb7ff5956b85cf9274da2324da74c6893bf31d
MD5 9a844e0d2ee7cf4577e170bd62c93458
BLAKE2b-256 6f11f477acd7c536dedcc12ed40fa1927ca95d5dcd0fb7da25c24614b300396e

See more details on using hashes here.

Provenance

File details

Details for the file mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 205.6 kB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.20.0 setuptools/40.4.3 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for mgcpy-0.0.4-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 64b53f13e2f74efce4fa53ed3bbba1c0f6ade03888f3a61c0465cd5b8aba7f18
MD5 e4388519d293e96d1fd2772ecff66a94
BLAKE2b-256 c0fef1ca04a7e0442603936a559853bf96cc2110d0c7c1ead05fd4d1ab869ddd

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page