Skip to main content

A set of tools in Python for multiscale graph correlation and other statistical tests

Project description

mgcpy

Coverage Status Build Status PyPI PyPI - Downloads DockerHub DOI Documentation Status License PEP8 Code Climate

mgcpy is a Python package containing tools for multiscale graph correlation and other statistical tests, that is capable of dealing with high dimensional and multivariate data.

Documentation: https://mgcpy.readthedocs.io/en/latest/

Installation Guide:

Install from PyPi

pip3 install mgcpy

Install from Github

git clone https://github.com/NeuroDataDesign/mgcpy
cd mgcpy
python3 setup.py install
  • sudo, if required
  • python3 setup.py build_ext --inplace # for cython, if you want to test in-place, first execute this

Setting up the development environment:

  • To build image and run from scratch:

    • Install docker
    • Build the docker image, docker build -t mgcpy:latest .
      • This takes 10-15 mins to build
    • Launch the container to go into mgcpy's dev env, docker run -it --rm --name mgcpy-env mgcpy:latest
  • Pull image from Dockerhub and run:

    • docker pull tpsatish95/mgcpy:latest or docker pull tpsatish95/mgcpy:development
    • docker run -it --rm -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest
  • To run demo notebooks (from within Docker):

    • cd demos
    • jupyter notebook --ip 0.0.0.0 --no-browser --allow-root
    • Then copy the url it generates, it looks something like this: http://(0de284ecf0cd or 127.0.0.1):8888/?token=e5a2541812d85e20026b1d04983dc8380055f2d16c28a6ad
    • Edit this: (0de284ecf0cd or 127.0.0.1) to: 127.0.0.1, in the above link and open it in your browser
    • Then open mgc.ipynb
  • To mount/load local files into docker container:

    • Do docker run -it --rm -v <local_dir_path>:/root/workspace/ -p 8888:8888 --name mgcpy-env tpsatish95/mgcpy:latest, replace <local_dir_path> with your local dir path.
    • Do cd ../workspace when you are inside the container to view the mounted files. The mgcpy package code will be in /root/code directory.

MGC Algorithm's Flow

MGCPY Flow

Power Curves

License

This project is covered under the Apache 2.0 License.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mgcpy-0.1.0-py3.6-macosx-10.13-x86_64.egg (281.9 kB view details)

Uploaded Source

mgcpy-0.1.0-cp36-cp36m-macosx_10_13_x86_64.whl (212.9 kB view details)

Uploaded CPython 3.6m macOS 10.13+ x86-64

File details

Details for the file mgcpy-0.1.0-py3.6-macosx-10.13-x86_64.egg.

File metadata

  • Download URL: mgcpy-0.1.0-py3.6-macosx-10.13-x86_64.egg
  • Upload date:
  • Size: 281.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for mgcpy-0.1.0-py3.6-macosx-10.13-x86_64.egg
Algorithm Hash digest
SHA256 b3d9c8fe37fe46aa1cc88e74987de343f353afb5f21489248e6f21bb61111b08
MD5 74851ef5347ec9dcc1689086c07ee705
BLAKE2b-256 0141d1931ef0d1f41f0516d97c1b30216a77ecbe6dcda1217e7ae64cbb23b9fd

See more details on using hashes here.

Provenance

File details

Details for the file mgcpy-0.1.0-cp36-cp36m-macosx_10_13_x86_64.whl.

File metadata

  • Download URL: mgcpy-0.1.0-cp36-cp36m-macosx_10_13_x86_64.whl
  • Upload date:
  • Size: 212.9 kB
  • Tags: CPython 3.6m, macOS 10.13+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.21.0 setuptools/40.6.2 requests-toolbelt/0.8.0 tqdm/4.28.1 CPython/3.6.5

File hashes

Hashes for mgcpy-0.1.0-cp36-cp36m-macosx_10_13_x86_64.whl
Algorithm Hash digest
SHA256 6ec0860519ab0cdfcda89fe9841d2561f59747acaa50a409fd3d8c947661b92c
MD5 cf8a704979f2c34535e22eb39785ef25
BLAKE2b-256 b68c133898da0a1424453a9f5ed380b1c347b6c6464625ebc1d56eb3c653abf4

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page