Skip to main content

A standard format for offline reinforcement learning datasets, with popular reference datasets and related utilities.

Project description

pre-commit Code style: black

Minari is a Python library for conducting research in offline reinforcement learning, akin to an offline version of Gymnasium or an offline RL version of HuggingFace's datasets library.

The documentation website is at minari.farama.org. We also have a public discord server (which we use for Q&A and to coordinate development work) that you can join here: https://discord.gg/bnJ6kubTg6.

Installation

To install Minari from PyPI:

pip install minari

This will install the minimum required dependencies. Additional dependencies will be prompted for installation based on your use case. To install all dependencies at once, use:

pip install "minari[all]"

If you'd like to start testing or contribute to Minari please install this project from source with:

git clone https://github.com/Farama-Foundation/Minari.git
cd Minari
pip install -e ".[all]"

Command Line API

To check available remote datasets:

minari list remote

To download a dataset:

minari download D4RL/door/human-v2

To check available local datasets:

minari list local

To show the details of a dataset:

minari show D4RL/door/human-v2

For the list of commands:

minari --help

Basic Usage

Reading a dataset

import minari

dataset = minari.load_dataset("D4RL/door/human-v2")

for episode_data in dataset.iterate_episodes():
    observations = episode_data.observations
    actions = episode_data.actions
    rewards = episode_data.rewards
    terminations = episode_data.terminations
    truncations = episode_data.truncations
    infos = episode_data.infos
    ...

Writing a dataset

import minari
import gymnasium as gym
from minari import DataCollector


env = gym.make('FrozenLake-v1')
env = DataCollector(env)

for _ in range(100):
    env.reset()
    done = False
    while not done:
        action = env.action_space.sample()  # <- use your policy here
        obs, rew, terminated, truncated, info = env.step(action)
        done = terminated or truncated

dataset = env.create_dataset("frozenlake/test-v0")

For other examples, see Basic Usage. For a complete tutorial on how to create new datasets using Minari, see our Pointmaze D4RL Dataset tutorial, which re-creates the Maze2D datasets from D4RL.

Citation

If you use Minari, please consider citing it:

@software{minari,
	author = {Younis, Omar G. and Perez-Vicente, Rodrigo and Balis, John U. and Dudley, Will and Davey, Alex and Terry, Jordan K},
	doi = {10.5281/zenodo.13767625},
	month = sep,
	publisher = {Zenodo},
	title = {Minari},
	url = {https://doi.org/10.5281/zenodo.13767625},
	version = {0.5.0},
	year = 2024,
	bdsk-url-1 = {https://doi.org/10.5281/zenodo.13767625}
}

Minari is a shortening of Minarai, the Japanese word for "learning by observation".

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minari-0.5.1.tar.gz (46.8 kB view details)

Uploaded Source

Built Distribution

minari-0.5.1-py3-none-any.whl (51.4 kB view details)

Uploaded Python 3

File details

Details for the file minari-0.5.1.tar.gz.

File metadata

  • Download URL: minari-0.5.1.tar.gz
  • Upload date:
  • Size: 46.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for minari-0.5.1.tar.gz
Algorithm Hash digest
SHA256 aaa6e79c5b03cdbb587a6474ccf250a2e0bfa365bfc009343695df4eb09ea7ab
MD5 5c5085e8505625fe641ab8f8354a987f
BLAKE2b-256 0a5058d00cc233e1b4c82c4206c2c54a10c1ac5c48fe0e6b6d59e53dda616987

See more details on using hashes here.

Provenance

File details

Details for the file minari-0.5.1-py3-none-any.whl.

File metadata

  • Download URL: minari-0.5.1-py3-none-any.whl
  • Upload date:
  • Size: 51.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.1.1 CPython/3.12.7

File hashes

Hashes for minari-0.5.1-py3-none-any.whl
Algorithm Hash digest
SHA256 6fdcf0e352e3b80fa2c879bd15666ed68ba05a97e7ce69d69e894969c440c344
MD5 f7c638a292c116b7199cf12c732f0ad5
BLAKE2b-256 887a8919763297cfb34ffae36b5edc9f83902af408848b5b0c5a28ca467a82f6

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page