Skip to main content

Minimalistic gridworld reinforcement learning environments.

Project description

pre-commit Code style: black

Figure Door Key Curriculum

The Minigrid library contains a collection of discrete grid-world environments to conduct research on Reinforcement Learning. The environments follow the Gymnasium standard API and they are designed to be lightweight, fast, and easily customizable.

The documentation website is at minigrid.farama.org, and we have a public discord server (which we also use to coordinate development work) that you can join here: https://discord.gg/B8ZJ92hu

Note that the library was previously known as gym-minigrid and it has been referenced in several publications. If your publication uses the Minigrid library and you wish for it to be included in the list of publications, please create an issue in the GitHub repository.

Installation

To install the Minigrid library use pip install minigrid.

We support Python 3.7, 3.8, 3.9 and 3.10 on Linux and macOS. We will accept PRs related to Windows, but do not officially support it.

Environments

The included environments can be divided in two groups. The original Minigrid environments and the BabyAI environments.

Minigrid

The list of the environments that were included in the original Minigrid library can be found in the documentation. These environments have in common a triangle-like agent with a discrete action space that has to navigate a 2D map with different obstacles (Walls, Lava, Dynamic obstacles) depending on the environment. The task to be accomplished is described by a mission string returned by the observation of the agent. These mission tasks include different goal-oriented and hierarchical missions such as picking up boxes, opening doors with keys or navigating a maze to reach a goal location. Each environment provides one or more configurations registered with Gymansium. Each environment is also programmatically tunable in terms of size/complexity, which is useful for curriculum learning or to fine-tune difficulty.

BabyAI

These environments have been imported from the BabyAI project library and the list of environments can also be found in the documentation. The purpose of this collection of environments is to perform research on grounded language learning. The environments are derived from the Minigrid grid-world environments and include an additional functionality that generates synthetic natural-looking instructions (e.g. “put the red ball next to the box on your left”) that command the the agent to navigate the world (including unlocking doors) and move objects to specified locations in order to accomplish the task.

Training an Agent

The rl-starter-files is a repository with examples on how to train Minigrid environments with RL algorithms. This code has been tested and is known to work with this environment. The default hyper-parameters are also known to converge.

Citation

The original gym-minigrid environments were created as part of work done at Mila. The Dynamic obstacles environment were added as part of work done at IAS in TU Darmstadt and the University of Genoa for mobile robot navigation with dynamic obstacles.

To cite this project please use:

@software{minigrid,
  author = {Chevalier-Boisvert, Maxime and Willems, Lucas and Pal, Suman},
  title = {Minimalistic Gridworld Environment for Gymnasium},
  url = {https://github.com/Farama-Foundation/Minigrid},
  year = {2018},
}

If using the BabyAI environments please also cite the following:

@article{chevalier2018babyai,
  title={Babyai: A platform to study the sample efficiency of grounded language learning},
  author={Chevalier-Boisvert, Maxime and Bahdanau, Dzmitry and Lahlou, Salem and Willems, Lucas and Saharia, Chitwan and Nguyen, Thien Huu and Bengio, Yoshua},
  journal={arXiv preprint arXiv:1810.08272},
  year={2018}
}

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

minigrid-2.2.1.tar.gz (73.4 kB view details)

Uploaded Source

Built Distribution

minigrid-2.2.1-py3-none-any.whl (102.9 kB view details)

Uploaded Python 3

File details

Details for the file minigrid-2.2.1.tar.gz.

File metadata

  • Download URL: minigrid-2.2.1.tar.gz
  • Upload date:
  • Size: 73.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for minigrid-2.2.1.tar.gz
Algorithm Hash digest
SHA256 bc364a1da21061f1082e4e994064fb2795b8309a7d202192670f180db54f24d3
MD5 a4ad721719e23561a0e0cd97728eaa69
BLAKE2b-256 af975aa46c37dabb502e427e9b715f7992bca665fc8eeb106163493006e9d8bf

See more details on using hashes here.

File details

Details for the file minigrid-2.2.1-py3-none-any.whl.

File metadata

  • Download URL: minigrid-2.2.1-py3-none-any.whl
  • Upload date:
  • Size: 102.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for minigrid-2.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 ccce729fe4f36900784619db1e27b6b3a423f213bf4a93e245299de5f5f804e4
MD5 8ecd5f95dd8ff66393dc68a1cbc86a50
BLAKE2b-256 c1f5940b942bf0a4970e133af66a41ed548495c1cc20434d9e3abf2acfe501bf

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page