Skip to main content

No project description provided

Project description

ml_dtypes

Unittests Wheel Build PyPI version

This is not an officially supported Google product.

ml_dtypes is a stand-alone implementation of several NumPy dtype extensions used in machine learning libraries, including:

  • bfloat16: an alternative to the standard float16 format
  • float8_*: several experimental 8-bit floating point representations including:
    • float8_e4m3b11
    • float8_e4m3fn
    • float8_e5m2

Installation

The ml_dtypes package is tested with Python versions 3.8-3.11, and can be installed with the following command:

pip install ml_dtypes

To test your installation, you can run the following:

pip install absl-py pytest
pytest --pyargs ml_dtypes

To build from source, clone the repository and run:

git submodule init
git submodule update
pip install .

Example Usage

>>> from ml_dtypes import bfloat16
>>> import numpy as np
>>> np.zeros(4, dtype=bfloat16)
array([0, 0, 0, 0], dtype=bfloat16)

Importing ml_dtypes also registers the data types with numpy, so that they may be referred to by their string name:

>>> np.dtype('bfloat16')
dtype(bfloat16)
>>> np.dtype('float8_e5m2')
dtype(float8_e5m2)

License

The ml_dtypes source code is licensed under the Apache 2.0 license (see LICENSE). Pre-compiled wheels are built with the EIGEN project, which is released under the MPL 2.0 license (see LICENSE.eigen).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_dtypes-0.0.3.tar.gz (683.4 kB view details)

Uploaded Source

Built Distributions

ml_dtypes-0.0.3-cp311-cp311-win_amd64.whl (95.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

ml_dtypes-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (152.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.0.3-cp311-cp311-macosx_10_9_universal2.whl (223.4 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.0.3-cp310-cp310-win_amd64.whl (95.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

ml_dtypes-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (152.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.0.3-cp310-cp310-macosx_10_9_universal2.whl (223.4 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.0.3-cp39-cp39-win_amd64.whl (95.1 kB view details)

Uploaded CPython 3.9 Windows x86-64

ml_dtypes-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (152.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.0.3-cp39-cp39-macosx_10_9_universal2.whl (223.3 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.0.3-cp38-cp38-win_amd64.whl (95.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

ml_dtypes-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (152.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.0.3-cp38-cp38-macosx_10_9_universal2.whl (223.3 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file ml_dtypes-0.0.3.tar.gz.

File metadata

  • Download URL: ml_dtypes-0.0.3.tar.gz
  • Upload date:
  • Size: 683.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.0.3.tar.gz
Algorithm Hash digest
SHA256 d19cde6fb503b7258e8edeb895fa66b99bf9fcb6fcffb4becfae71d4890016c7
MD5 f210911df296e6d3ffeaf52a02bd9ec1
BLAKE2b-256 937f8ec8350c29deddce0aec64943c67fb632c579268e8aea79df7b6684a2e3a

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 94c7ec5c9378d754ed2db8896c0007d3981c61850397cdaa06fc45f6149ad565
MD5 b92d0e0a3e44a90b9e9dde40b533f317
BLAKE2b-256 413213337c6257347eddda26c211e73bc08c176064433fa75d7c36776892481b

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 02d69d0e20693e2b98a98265ae805f7b9eada978e22a23fbde6d91ebe784889f
MD5 e8cf7a3881784e54840dc5370e738e66
BLAKE2b-256 cafb3c8982077699318469f58eb48dff12f10de1c14904e1c955dead33fdd6fd

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 f889c9cdb33bffc9c2a18cb2a0d677064d86bb2e6984201ed7ff47cb0612f033
MD5 71e0d23aeb06ce85278b146b34616071
BLAKE2b-256 cf195a04986473c19ad2559061b7f98de5190465954dbd57ca854594934872ca

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 915328dc850395ff2ea05f6a0257bdff5eff3914aad2522541632c4f5cf259a1
MD5 921f30d20532c2367a2ca7f59a962dde
BLAKE2b-256 a81b80f63070d3c49affc5265fca3db91605b2ff091a8d574dd5a0244d9fd3f3

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eabaf3690158ba769d3050f5acdd7766fc9c91bc5e146b695cdb489c7bae58d6
MD5 27195745c3499c3bdb0f85a3c361725e
BLAKE2b-256 79b0a108ed42b70d2ebdf86fb884cc10ef20959a58d00c6d28aeae1f20ea95e1

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 cf49715c9b8a8baf878c53bbe20aef30531f9f8bd85c679a2b1eb3f29302ce3d
MD5 13f9ff7f8e7fb893c40ad7b2e8068a11
BLAKE2b-256 81571d1f4b3d0d10ba1b41b432ccccfb94af7276f5bf0e77f0a8d5d9a22cc7dd

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ml_dtypes-0.0.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 95.1 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.0.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 acc02d67ae09bbad1a49766d58661875f6c28adb130f75737607f7dca0d32136
MD5 8464c85ffa7ea0489e5953043ffb57f8
BLAKE2b-256 fbb3a01d3c19aec9c2e63fbd394e2d6008d9f91017c0b433e2d22a6f4d9a75ff

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3b7f7ec7dbef758391eae98f7682df4bc550db184b83805a1d3fa3c06ee65909
MD5 ab30d6865db96ae734132a5e49886548
BLAKE2b-256 4b074930066316e07498880a8c1785bc3ad11ed1d113d39a777be4e88866c88c

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 7a2720452e4595cee86b7c900bb1b31707c663222b5f0bf68bb9d511a86cf65b
MD5 4e4eeb9336199fba0ff2aee8c65efc74
BLAKE2b-256 9894e33b044f11714b12cc9697aac870c301ad9dd50304c2a60a92578b11245f

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_dtypes-0.0.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 95.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.0.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 a3dc05e59d3b7123c269f646146cd22e9ab62f71c696572e26bab065beba7d9f
MD5 e4a15d6c70974c2c7110d08328843504
BLAKE2b-256 4c96e1a6ec7a15eae66ebe3d5c997aba8799703fdcd1e967acd0e3a6a3e5d4de

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 644246afcefdf7a77fd27018b2441d35bd566d6e53f3c4f7f029c1598361142c
MD5 c106ffa48dfb97e5c4b5da531148fbfe
BLAKE2b-256 1b738ccaa133fcabc5178bdfd0f2d43020aa262f6dbc1e51220aa110039a647f

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.0.3-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.0.3-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 1236ac47bb58e4a54123ac529c578dfe23a5882a515329fddfb82345b131f102
MD5 f867a8d7cd0bcfab3c6b9a9b31e90065
BLAKE2b-256 5e2b2ebd44d13aaa0535547a4aac06f6f84e8b6a962a8f7876b31da67736d854

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page