Skip to main content

No project description provided

Project description

ml_dtypes

Unittests Wheel Build PyPI version

This is not an officially supported Google product.

ml_dtypes is a stand-alone implementation of several NumPy dtype extensions used in machine learning libraries, including:

  • bfloat16: an alternative to the standard float16 format
  • float8_*: several experimental 8-bit floating point representations including:
    • float8_e4m3b11
    • float8_e4m3fn
    • float8_e4m3fnuz
    • float8_e5m2
    • float8_e5m2fnuz

Installation

The ml_dtypes package is tested with Python versions 3.8-3.11, and can be installed with the following command:

pip install ml_dtypes

To test your installation, you can run the following:

pip install absl-py pytest
pytest --pyargs ml_dtypes

To build from source, clone the repository and run:

git submodule init
git submodule update
pip install .

Example Usage

>>> from ml_dtypes import bfloat16
>>> import numpy as np
>>> np.zeros(4, dtype=bfloat16)
array([0, 0, 0, 0], dtype=bfloat16)

Importing ml_dtypes also registers the data types with numpy, so that they may be referred to by their string name:

>>> np.dtype('bfloat16')
dtype(bfloat16)
>>> np.dtype('float8_e5m2')
dtype(float8_e5m2)

License

The ml_dtypes source code is licensed under the Apache 2.0 license (see LICENSE). Pre-compiled wheels are built with the EIGEN project, which is released under the MPL 2.0 license (see LICENSE.eigen).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

ml_dtypes-0.1.0.tar.gz (686.9 kB view details)

Uploaded Source

Built Distributions

ml_dtypes-0.1.0-cp311-cp311-win_amd64.whl (120.7 kB view details)

Uploaded CPython 3.11 Windows x86-64

ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (189.7 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

ml_dtypes-0.1.0-cp311-cp311-macosx_10_9_universal2.whl (317.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.1.0-cp310-cp310-win_amd64.whl (120.4 kB view details)

Uploaded CPython 3.10 Windows x86-64

ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.6 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (189.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

ml_dtypes-0.1.0-cp310-cp310-macosx_10_9_universal2.whl (317.9 kB view details)

Uploaded CPython 3.10 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.1.0-cp39-cp39-win_amd64.whl (120.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (191.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (190.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

ml_dtypes-0.1.0-cp39-cp39-macosx_10_9_universal2.whl (317.9 kB view details)

Uploaded CPython 3.9 macOS 10.9+ universal2 (ARM64, x86-64)

ml_dtypes-0.1.0-cp38-cp38-win_amd64.whl (120.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (190.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (189.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

ml_dtypes-0.1.0-cp38-cp38-macosx_10_9_universal2.whl (317.8 kB view details)

Uploaded CPython 3.8 macOS 10.9+ universal2 (ARM64, x86-64)

File details

Details for the file ml_dtypes-0.1.0.tar.gz.

File metadata

  • Download URL: ml_dtypes-0.1.0.tar.gz
  • Upload date:
  • Size: 686.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.1.0.tar.gz
Algorithm Hash digest
SHA256 c1fc0afe63ce99069f9d7e0693a61cfd0aea90241fc3821af9953d0c11f4048a
MD5 9a46cb2e8e56132a462b2d3e21aaffe1
BLAKE2b-256 e87e355b8db0651a2fe74437b578db1afc965b88bedd2116a83308bd7b91af43

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 8de9bbf5bed587a1166699447ea14d1e8fe66d4e812811e37bf2f4d988475476
MD5 bb4036cea58ce8d666df34c41db8fdaa
BLAKE2b-256 dc2d08840216d482b41b0b64e7b51c71f9b08c3b12e524d618db9dfe19c0ed76

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 99fab8262d175c49bf1655c229244f301274e8289449c350ba4d5b95ade07d9a
MD5 1fe85e3ec3b2ca18337ec9b668aaaf36
BLAKE2b-256 642e48ae32e673bf5ed2ea4e6d073b6b8af4a0b1220b69fa51cde3c01545fca1

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 36e8518c8fd2c38729f020125f39ef07b045f5c16d0846320c7252d7773285ee
MD5 162335232adc8e170d3c4a38d008d679
BLAKE2b-256 b56823b29b1dac193c387c506d8bbf531a7b1f8f26d17a4cf117ef016cad7a76

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp311-cp311-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp311-cp311-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 b9c5578dffd85637a7dd437192de18bc1a14eb6ba7d53ef40de3f84c51c789e5
MD5 3fd7e6fa48a99f0edd535f70fb76831b
BLAKE2b-256 9a30e018c89343a05acc4badef90b1264114f3919aac5da48a7e8232a881b492

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 ad765159ac6c18d5ee7d325fcf34d3106a9d9d7a49713d998f5cfa330a1459b4
MD5 cef7f4fe7aabca51b246ac57193bb150
BLAKE2b-256 03e01f341b60e866653eb67322b8acc1b9cc601da7a7cc0f8f9494a3d43a8592

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dee8ea629b8e3e20c6649852c1b9deacfa13384ab9337f2c9e717e401d102f23
MD5 6a3784cc4099e244a68203e8304e58d7
BLAKE2b-256 32d1ac8d79aadbdeb6b2d4b350f7575d2ae9b362a1136f9d2338d9337f37c95b

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 87aa1cf83d41fed5a40fc27ee57ac4c1bf904e940f082531d3d58f1c318b5928
MD5 c8ffcc861a145c96e6d3301a194297e9
BLAKE2b-256 508bbf5e5903b7567399a6c718f31986e19b8b5019b6e5a95518fcd92bba9a20

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp310-cp310-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp310-cp310-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 377f2d5cfbf809b59188e0bfda4a0774e658541f575b637fee4850d99c2f9fdc
MD5 ee7c806ffc46bd0c8a5905af3f451fce
BLAKE2b-256 7774266060215a30a04b4347aad204335541945d1d73968fa7395d4cd96e1311

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: ml_dtypes-0.1.0-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 120.3 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.1.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c9218175b06764b8ddc95cb18d11a6c4b48a4b103a31c9ea2b2c3cd0cfc369f8
MD5 ca4056feb1ff64f79a333753a8aa6aca
BLAKE2b-256 d37443b2a9f0a52c6786d410b5cbacf19324cadd1c55635a5bc76d66c2e3ef00

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8c5c9fe086756fbc1bf51296431d64429536093cf6e2ba592e042d7fc07c8514
MD5 dfb78c2489516bfeb2bc6e2bff339462
BLAKE2b-256 f2b0a12b40c848ac9795082c1cc9054d69580ef4cc47a036917d5be34ca5f6ea

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 ffb7882dd46399217dc54f37affc899e0a29a4cfb63e5bf733ac0baf4a179c77
MD5 a0e6dc133f7b9121c5c77159b7be1352
BLAKE2b-256 a8bde9a11180103abe83fe97472ea118bf6e794ceb4fd18e5ed52db614c734e5

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp39-cp39-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp39-cp39-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 77970beeb3cf6ac559c4b6b393f24778a5abd34fafbaad82d5a0d17d0f148936
MD5 9d756693c8700c777d1f2182bbce67b2
BLAKE2b-256 e690a2fc320d098a72b4c96f97b128bab7449dd479c704075b96bc86bb9e3be5

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_dtypes-0.1.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 120.2 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.9.16

File hashes

Hashes for ml_dtypes-0.1.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 2de6c81b0da398d54aabdd7de599f2dfc43e30b65d9fad379a69f4cc4ae165d3
MD5 23e4fda3fed5678fdd294fbce1be12de
BLAKE2b-256 6d9c62207711a105d37e83ca4899298b72254c65dc40535a007165ef532a532f

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 41b6beeaea47e2466b94068664c9a45b2a65dd023aa4e5deeb5a73303661344e
MD5 c80883e27f8259e4908dd9214a9a4b3f
BLAKE2b-256 4f88e252178b54fea300f1c4d8a28873f394a9a804515c8666a4305f2ea8bd4f

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 273c306db846005b83a98c9c7ec3dc8fa20e8f11c3772c8e8c20cc12d8abfd4b
MD5 e60a605f57eb684e870463ce503c3786
BLAKE2b-256 c671fa610622b37d2f80652e0f02c1d4d3a2db61b9877cbfe2bded192805d161

See more details on using hashes here.

Provenance

File details

Details for the file ml_dtypes-0.1.0-cp38-cp38-macosx_10_9_universal2.whl.

File metadata

File hashes

Hashes for ml_dtypes-0.1.0-cp38-cp38-macosx_10_9_universal2.whl
Algorithm Hash digest
SHA256 a29fbf128583673eca0f43def1dbe77e02c1e8b8a8331db2877bbb57d091ef11
MD5 f9c1fb803497f479c0fa7fc6ee0d93f8
BLAKE2b-256 a6ff759cf2360971b0668e5b9b5f34da9bc2c1dcfbfe56975ba83f09db6526fa

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page