Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install --extra-index-url https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {39, 310, 311}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 20.04 or later.
  • [DEPRECATED] Windows 10 or later. For a Windows-compatible library, please refer to MLMD 1.14.0 or earlier versions.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

ml_metadata-1.16.0-cp311-cp311-macosx_12_0_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.11 macOS 12.0+ x86-64

ml_metadata-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

ml_metadata-1.16.0-cp310-cp310-macosx_12_0_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.10 macOS 12.0+ x86-64

ml_metadata-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (7.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

ml_metadata-1.16.0-cp39-cp39-macosx_12_0_x86_64.whl (20.1 MB view details)

Uploaded CPython 3.9 macOS 12.0+ x86-64

File details

Details for the file ml_metadata-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5d2cd458030df565867957f8dc961dbe9298e3fa22c7f9b86c850ffa7915465
MD5 1f0de20787a09c9a9eeec1f1e61e02a9
BLAKE2b-256 b8d4e9a39e4aaccf0b99f584659549ab4fb8e008ef66e1fdbfa961685142ff33

See more details on using hashes here.

File details

Details for the file ml_metadata-1.16.0-cp311-cp311-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp311-cp311-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 e0a0cc74c1e213ad305cfa562445c156aee70400ccadb249b77e3c8b2da53904
MD5 44db6db6ed6e65e0c60b0cdbf67300b9
BLAKE2b-256 5666c876cf20d85d5e8270cdd49457d6bcc5a4f806141a26cd98d8b38d48e71e

See more details on using hashes here.

File details

Details for the file ml_metadata-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cd93577d76e4158cce42c3b98cc2a9d88955137f846e17a2fec3ffe72ba9f0bb
MD5 4bb9e02c4278318000a6f44941494c5b
BLAKE2b-256 82ff783d6dd19c6d7efa5adcc225e9cfc61d38496cd4f07d4b78ecb9decf84f8

See more details on using hashes here.

File details

Details for the file ml_metadata-1.16.0-cp310-cp310-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp310-cp310-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 1e4d559befa38b4d464565c7fafd7cd30b6acd39f236e1d0224ea22cdf0fa5e6
MD5 bdf28b1c79cbcbbd35102d0111a86378
BLAKE2b-256 1eeeca2b19bc255ae6a5e3e1f88a6a15a8a8b294f91bb8fc36f201af83fc41c6

See more details on using hashes here.

File details

Details for the file ml_metadata-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8ebc8172cd360688f9e41bb1d338c7d24f81e0907ac2ac7be50aed6200274993
MD5 3cc1b3065ec150ab131a78b846928c33
BLAKE2b-256 b26ebfdf9ccc97e3066a31c6a34fed84f9166e3dca625afe9d6be80b08ec146f

See more details on using hashes here.

File details

Details for the file ml_metadata-1.16.0-cp39-cp39-macosx_12_0_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.16.0-cp39-cp39-macosx_12_0_x86_64.whl
Algorithm Hash digest
SHA256 92dd42a6540f0133a04c187c44a7baaf062e49ce054aab5cc965344fcba1ad7a
MD5 7d1a0233370a932a6c97750281c8f1e9
BLAKE2b-256 4ca27dd8eea0b113e46208ebeee54aefbc4f4a2b301394ffe3f73bc9769c9ead

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page