Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

Caution: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/tensorflow/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

bazel run -c opt --define grpc_no_ares=true ml_metadata:build_pip_package

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.12.6 (Sierra) or later.
  • Ubuntu 14.04 or later.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-0.13.2-cp37-cp37m-manylinux1_x86_64.whl (4.1 MB view details)

Uploaded CPython 3.7m

ml_metadata-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ml_metadata-0.13.2-cp36-cp36m-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.6m

ml_metadata-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

ml_metadata-0.13.2-cp35-cp35m-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.5m

ml_metadata-0.13.2-cp35-cp35m-macosx_10_6_intel.whl (4.6 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

ml_metadata-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl (4.2 MB view details)

Uploaded CPython 2.7mu

ml_metadata-0.13.2-cp27-cp27m-macosx_10_13_intel.whl (4.6 MB view details)

Uploaded CPython 2.7m macOS 10.13+ intel

ml_metadata-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl (4.6 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-0.13.2-cp37-cp37m-manylinux1_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp37-cp37m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.1 MB
  • Tags: CPython 3.7m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for ml_metadata-0.13.2-cp37-cp37m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 d7dc115a75d6e9c40efad22d3f5e5e29860a87fa1d0c76bf859778acc61477d0
MD5 b1826de06b7f2e6038493581f1136d3f
BLAKE2b-256 9301825d1e895f2dc0bdf35ae333408754a42c9e9b6528e2e359a79573fbd243

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for ml_metadata-0.13.2-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 141c1d31e6d849d347c212e5404e78df15508fcd1eb37672ba5da328c9cf8de3
MD5 782d330d3c29eb555d7a2a93f5886d00
BLAKE2b-256 6f0d15dd19968ed14bb26eadbf0070815280dd0a8dd5afe0d8a03c4e8c806250

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp36-cp36m-manylinux1_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp36-cp36m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.6m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for ml_metadata-0.13.2-cp36-cp36m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 c8af16e1aaf51893d9a4a52bf34163179839f858442ae643f9122e3a9ee9bdbd
MD5 ddff9bb8cdd37faad3e7106f540f50c8
BLAKE2b-256 e77f0e0eb09e0191bd439fb7bbaf06908d6f5b403bd2b2d812949cdb54a985fe

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.5

File hashes

Hashes for ml_metadata-0.13.2-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 f1e785ef4955c0b50cd0486368ac3b2ec1270b560bc8e026f8528163929ac3ff
MD5 b31d86d4e31c9be83d12afb917b5fd31
BLAKE2b-256 6774c60301fb4d268e885b5eb5807afdab90c6fcc78c577e28688c0b93b5fa73

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp35-cp35m-manylinux1_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp35-cp35m-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 3.5m
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.13

File hashes

Hashes for ml_metadata-0.13.2-cp35-cp35m-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 a597868e4fe4091372aaadfebe150a879d75dafde532642575411bcd3fc8ee9d
MD5 c5601a54639067713b351d8edd6e19cc
BLAKE2b-256 abf01cf4752fb5c9afdcbd6c7bd1b9d71ba4ec580bb8760e7d450960027ae6a5

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.13

File hashes

Hashes for ml_metadata-0.13.2-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 ca8498cf57587abd2485730f64c83013289568ca6b2c9980b7309be777037c23
MD5 42363d99eeb27325d678538e46f215d6
BLAKE2b-256 8d9f371f6063f33720457347d4e322dc05d4c9cf4937322480cbe505333e8bbb

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl
  • Upload date:
  • Size: 4.2 MB
  • Tags: CPython 2.7mu
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.13

File hashes

Hashes for ml_metadata-0.13.2-cp27-cp27mu-manylinux1_x86_64.whl
Algorithm Hash digest
SHA256 5bbc2cae457310abb1029c6d1243df7dfc022758cfaf0ac41678727505a99bea
MD5 29eea6a8080f3154bc817d464e87a03c
BLAKE2b-256 58ed813342e91e19da6f89c4aa83eaf70d47565ec854089420640da394ebff85

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp27-cp27m-macosx_10_13_intel.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp27-cp27m-macosx_10_13_intel.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 2.7m, macOS 10.13+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.11.0 pkginfo/1.4.2 requests/2.20.0 setuptools/39.1.0 requests-toolbelt/0.8.0 tqdm/4.25.0 CPython/2.7.13

File hashes

Hashes for ml_metadata-0.13.2-cp27-cp27m-macosx_10_13_intel.whl
Algorithm Hash digest
SHA256 8d4dc468303a05b01c6c9faae0a1fa13e56205a8f33cc40c4c4ff24efd5001fa
MD5 999c2204f9e5dad56b385c703e08c9f9
BLAKE2b-256 eb835ab6bfd359704b37464bab710c5df922f2ee49d6b8f681e0630bd2ca8c6b

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 4.6 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.12.1 pkginfo/1.5.0.1 requests/2.21.0 setuptools/40.8.0 requests-toolbelt/0.8.0 tqdm/4.30.0 CPython/2.7.14+

File hashes

Hashes for ml_metadata-0.13.2-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c24d3a3d1861ae35ec7b3c3808c2d6e6f5f424dec04e352baf91991256bfb1e4
MD5 933ec07430a6aa3d0c93e8fa31b23423
BLAKE2b-256 0704effb9132b7511e5a508445586419fafbfdac9490b99bef1441f25472222c

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page