Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {27, 35, 36, 37}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

bazel run -c opt --define grpc_no_ares=true ml_metadata:build_pip_package

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.12.6 (Sierra) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-0.22.0-cp37-cp37m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-0.22.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ml_metadata-0.22.0-cp36-cp36m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.6m Windows x86-64

ml_metadata-0.22.0-cp36-cp36m-manylinux2010_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

ml_metadata-0.22.0-cp36-cp36m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

ml_metadata-0.22.0-cp35-cp35m-win_amd64.whl (2.3 MB view details)

Uploaded CPython 3.5m Windows x86-64

ml_metadata-0.22.0-cp35-cp35m-manylinux2010_x86_64.whl (4.9 MB view details)

Uploaded CPython 3.5m manylinux: glibc 2.12+ x86-64

ml_metadata-0.22.0-cp35-cp35m-macosx_10_6_intel.whl (5.3 MB view details)

Uploaded CPython 3.5m macOS 10.6+ intel

ml_metadata-0.22.0-cp27-cp27mu-manylinux2010_x86_64.whl (4.9 MB view details)

Uploaded CPython 2.7mu manylinux: glibc 2.12+ x86-64

ml_metadata-0.22.0-cp27-cp27m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 2.7m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-0.22.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fd429ec6d7b59cda6c11552414c2ed3191a1fb5e99b89265e3330f0328349d8b
MD5 4dbef0d2f623b4abab16947c07fcc131
BLAKE2b-256 f5553f320aabe4cac2d13e8d077a616f86140a89ce957705dba1c4e18ebee7ee

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d8358996755637eecce1b1337a22db98f239d3f96db2580f9f54f550355b244d
MD5 5ff723930ea1ff748a3ab77cbdfde202
BLAKE2b-256 8ce8355bc1ebb41bdf6b5d4a69c954a07f2289d1e9cee1da546d1394d52f9119

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 79a752b84a8ec6cd826c0af1e85414eb754936bcb0f03af0d97d122fa2fbe881
MD5 08967de4cccae0652cf6724c04a90296
BLAKE2b-256 b9d9e8312c364d4462163f9588d287a1f7eb0251c6a04277352ef4ed71b4ad3c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 01a111cc8fb8a8065e39efe8df72019d4d436d812674ea571a6c8274a6a3fd39
MD5 3fe4cae806c24091b26b1b4cdf4074f7
BLAKE2b-256 30b22cf402322f3fe138f7e437fbd52cc5e0e0f6a7481c0e660f7bb41717ea31

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 53662849f4490562256b7639f834ff5e6d8ca89ff023f95c8fa488bb394f7ced
MD5 04241cde34407375b89080cde4bb1874
BLAKE2b-256 d9751d5488849cc0b00801a081a2335d2ee7e69f61d5b4bb1068359569fbc573

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 83b0cc3192ca18ea0a78bb94946b11a9f584e384876196341ab46adc558bbab9
MD5 48388e9151466707861defc3453d8885
BLAKE2b-256 bfd4a393ddb1652938d90cd4bd0051ecf841b506cc3e5d0b06e7ae6e7b0e24cf

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp35-cp35m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp35-cp35m-win_amd64.whl
  • Upload date:
  • Size: 2.3 MB
  • Tags: CPython 3.5m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp35-cp35m-win_amd64.whl
Algorithm Hash digest
SHA256 0e4096092792957d6006ee474c9e25facb27ece8425afe630fccf448566062e4
MD5 46eab02884c6e4ea9ab3946ccd295055
BLAKE2b-256 c1dae1813d5a5fb670f3fbec2315cbeeadba228b7920ba58f47cbfc971750521

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp35-cp35m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp35-cp35m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 3.5m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp35-cp35m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 b94356342b7e0a428ef0df7dcf5ec90e5c9e0574ae07af8f5e258090b2e108cf
MD5 e11fcfda55eb1faf9b325989e02fb85a
BLAKE2b-256 d50485ec35a090c749b4a7e81ea96a517e059b7eb569d7caa471b93c48c87978

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp35-cp35m-macosx_10_6_intel.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp35-cp35m-macosx_10_6_intel.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.5m, macOS 10.6+ intel
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp35-cp35m-macosx_10_6_intel.whl
Algorithm Hash digest
SHA256 c2982c8d40541baf5f48a8c9739bd069c0e3bcb7e1007bddb47905c0b0785854
MD5 0b60733ac0cdec7c2547a047054f1587
BLAKE2b-256 d335df3eb0c6c043bc1a1adbe144b1f9533ad54b6af294ddc446551f363c210c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp27-cp27mu-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp27-cp27mu-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 4.9 MB
  • Tags: CPython 2.7mu, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp27-cp27mu-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 55fe549622cfa96aa1483c09737297dc7621c2bfcb702e7fa5eb780eb895d338
MD5 bc6df63aa2cb565b7e4e14ce7dac9faa
BLAKE2b-256 e2a24099c3c8b962af4c12b37676e78387be8058812c70d8767905b46318bf5c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.22.0-cp27-cp27m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.22.0-cp27-cp27m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 2.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/2.0.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/44.0.0 requests-toolbelt/0.9.1 tqdm/4.38.0 CPython/3.7.7

File hashes

Hashes for ml_metadata-0.22.0-cp27-cp27m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a7f108ee0f94c439014bf341b3270329052a66d0035b2ef39918f632815ed71
MD5 a2deb9169e58d8cdcd15e7a38b82cd1e
BLAKE2b-256 2a9bb6c1e02ec3fac911b99138abeabfc40694cde1eb5291e2bcbe9d0c60a987

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page