Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install -i https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {36, 37, 38}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-0.27.0-cp38-cp38-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.8 Windows x86-64

ml_metadata-0.27.0-cp38-cp38-manylinux2010_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_metadata-0.27.0-cp38-cp38-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_metadata-0.27.0-cp37-cp37m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-0.27.0-cp37-cp37m-manylinux2010_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-0.27.0-cp37-cp37m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

ml_metadata-0.27.0-cp36-cp36m-win_amd64.whl (2.4 MB view details)

Uploaded CPython 3.6m Windows x86-64

ml_metadata-0.27.0-cp36-cp36m-manylinux2010_x86_64.whl (2.9 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

ml_metadata-0.27.0-cp36-cp36m-macosx_10_9_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-0.27.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for ml_metadata-0.27.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 528d6fda6c796cc551f1ed7759c26c277e265c696e5386d881743a3860d0b0f4
MD5 37653fb5662b8aed1e85504bfc7c1548
BLAKE2b-256 dd8a183482637faea3909f42ce0860253c6f7cdd5d279d69d39eb0c2d0e24194

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp38-cp38-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.8, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.5

File hashes

Hashes for ml_metadata-0.27.0-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4ebd71472558000e47790e3833d8931d857f20abadad39f5de4abf6c8366f5db
MD5 f70464f779c21376af770e486869bfd8
BLAKE2b-256 5988728c4db483902cb472a500d1289723bf50b8f9202b3f0fbf986edf78069f

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.8.2

File hashes

Hashes for ml_metadata-0.27.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a9d62c4fee9a4114a45def3753006f4468d0a22f19d9ebb715083e38d3e83f2a
MD5 0b925ffc77fcec89f61ef351d9355977
BLAKE2b-256 ae7dd31bb400268fa1f913ea283b7e8e81cfb0bc8c5583f9458d285c665e6c6c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.0

File hashes

Hashes for ml_metadata-0.27.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 401235cd404341a7a4f2ac363913f5b1267671ac190c4cebc9688032a451f2c0
MD5 6c4dd7e8b7c941bd35c09fe12582fdc3
BLAKE2b-256 8ff228843008d464fb7b35eb19ca84291aec22ace86db398aaa2fc6e4667dcd9

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp37-cp37m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.7m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.6

File hashes

Hashes for ml_metadata-0.27.0-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 eccee49733cccff7ad09f554f85ba0d162903dee50bffa307010c7e77bcb58c8
MD5 f59471f1decdf1da8c960ef7c3a8d184
BLAKE2b-256 35fa0a19b478a25c1269b5a04a4f5410ca814c7fd3f8d068a6c8b3b84dc5e44d

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.7.3

File hashes

Hashes for ml_metadata-0.27.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 a522216d3765b6f1328b541bdc49ed6cbdcebfede36c6bd1e7cae8263abee825
MD5 87f42753cdee324078be46190556b4dd
BLAKE2b-256 9b068f3e342086aef08788f22d295cd28b919ad0941434c02e839f614b268a81

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 2.4 MB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.1

File hashes

Hashes for ml_metadata-0.27.0-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 13819ded8a847692557acca2dfe3aaa7f12b2d4aad2ff8ad51e07b8fe1b53502
MD5 9ec5fa7bcf30260e47d065c65d610d15
BLAKE2b-256 8df3d8269774949a1aeaca21814a014880db1c13f91562a4b97ea044f8cb863c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp36-cp36m-manylinux2010_x86_64.whl
  • Upload date:
  • Size: 2.9 MB
  • Tags: CPython 3.6m, manylinux: glibc 2.12+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/52.0.0 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.10

File hashes

Hashes for ml_metadata-0.27.0-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2f7bdda47440ec036be1a9641eaa5ce8575ce24249faaaf0840bcd6720a74fad
MD5 995c4fb30863acbb1015089731c70382
BLAKE2b-256 d537702ee5c60bef124e431fe92ba3f72e7a0349cedeb95bc291b5dd88bdb43b

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-0.27.0-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-0.27.0-cp36-cp36m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 5.3 MB
  • Tags: CPython 3.6m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/40.6.3 requests-toolbelt/0.9.1 tqdm/4.56.0 CPython/3.6.8

File hashes

Hashes for ml_metadata-0.27.0-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac0c2399de07a6d79042b3d3eb0140120a055de46df81761e4e604d0489d4ce9
MD5 aa86a0523b607684f9b5ba7f98001dfd
BLAKE2b-256 acccbcad14e7362c6b631690eb33003a9aeeabd7524892f8d7585787cb105e9d

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page