Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install --extra-index-url https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {37, 38, 39}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-1.11.0-cp39-cp39-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.9 Windows x86-64

ml_metadata-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

ml_metadata-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

ml_metadata-1.11.0-cp38-cp38-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.8 Windows x86-64

ml_metadata-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_metadata-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_metadata-1.11.0-cp37-cp37m-win_amd64.whl (1.7 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.7 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl (19.1 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-1.11.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 c2f01fa0deff47262e7bfcc2ed4ca0c80b617ed4df9fe602cf88ca20d968cfc7
MD5 611ef946bfddd5ffebad7cec0a355ae6
BLAKE2b-256 6930e0dc2c24d4969ee87f3466ec5e0a9f5b410ba484f80605ef91f92cde2b28

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4f049fb13863ee5632ae69cc349dd20532f36a00d7bad9cc2b4c169349d0fe3f
MD5 8c01afda84d3aa66efe365c0cb93e6dd
BLAKE2b-256 e8c85794f09a5068d8aace7429016e004bf960d96254f1d6d2ed7b38d4c6dc0a

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 d02dcab9111cc554d6fd41b5c292180d2aa08aeb325af97f619ae71d519115ec
MD5 9e35e57b99fa939f6b55266a68d03f49
BLAKE2b-256 fcc86d3e2617fba458f88d2826c7cdf77bb1ebc4fba5f074123f58c9ff09510c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 858873a0ba2f7eafe8edfbc454e96505f2b9363472bbb424fff35331f28ca497
MD5 1bdb473e007793bebd91b2e077aa7696
BLAKE2b-256 87fcab7d7fd3ae9bc3dfd45c754ac16a2cb5cf70d78979a86ba9f74656ab291e

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f0a47f39fb53c296b36c479b5592715caa2c369c04a813e6fa59105aa9cfcf51
MD5 5b42b281543e53901a35ff2533e27ea0
BLAKE2b-256 335d9b44e8b47a079875da705261145dcba32546374cfff1a22a503df84ee924

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dc47be6c5480889f6ee054771b4cd5ce75655498fa56aa9c3aa13850bd13853a
MD5 08bf0be34bfba82e85e9bb3beff2ec0e
BLAKE2b-256 67f42acd2a4e2867583fcc33a452d805a9269e4dfb7f9b9907419a09a4f65328

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 fbd086c4bea1d1aec3b6c4065cc5e00272d15a870266773893967f8c686a66df
MD5 df5f8a8eeb7ec8e6bcf1053895a990f4
BLAKE2b-256 599cbc5cd9b39d315ec978978e7ec03e8055bde8b74b08410283d500d51ed5a7

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 3227652e17905eb65464dd10657bf176d785850ef14a123ec6e49026f3a303be
MD5 ee66f5945ce859782e5b66036ae3597b
BLAKE2b-256 0416e62cef78d6d013345b757b7292c106acddd145fb1063f08ea36bb35777bf

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.11.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8208baf5ff048f67450368ffd0c64711bb4f3fe5e642e21d34e3adb9be2090aa
MD5 db07068b9a9921de50d29d5a5abaaef5
BLAKE2b-256 99d61eb56d1f2f4ca59829320bab2d22b7cd1c61e21d807cb0d6d93afdb85423

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page