Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install -i https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {37, 38}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-1.6.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

ml_metadata-1.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_metadata-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_metadata-1.6.0-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-1.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-1.6.0-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-1.6.0-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.5

File hashes

Hashes for ml_metadata-1.6.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 1866ca93cb884a23ac206843e61060cf471c8dba184eb3c6ffbd7fc7597d6b06
MD5 17b64706e85b2bd0f286e9dd4288994c
BLAKE2b-256 71402785630aa76856e04578541b2a96aebdc5351d253159c268626406da8882

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.6.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c53e9501b61d03678566040237b89022f6fa322678702232c7c32f5e8cfeb699
MD5 d1c007d7ceab888a5d86913a42f5f4e0
BLAKE2b-256 3a4968a32a3634a89647c1524e444036e2bc3bea6c3a81bd2189dff4179dc6b3

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.9 MB
  • Tags: CPython 3.8, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.2

File hashes

Hashes for ml_metadata-1.6.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3cb7773d74c057cdab10fc303849649274dd4e3eea85fb4bdcb47b24fbe56b6c
MD5 112e65b0ea585415de1c418e61d71681
BLAKE2b-256 ddc53169521be6281215afd818046d3a6add541f5d39c1fdc253354d5933606e

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.6.0-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: ml_metadata-1.6.0-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.0

File hashes

Hashes for ml_metadata-1.6.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 e7f1457e3c4a981b08dd597502b58ca67be9750e791c1a1c223a20383e289bd7
MD5 969154d0ae8fb644928d178626917614
BLAKE2b-256 b9d26e2b194c7d23e7b7f62e72d2be5f76b098e15b8388cfabddd561263a512c

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.6.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e1dfdb99ab5277eb6a12d6b9ab628d6321e95e5555d27825c68f1dfe1af79130
MD5 2cbbd497d4fe2397e3370494123141b5
BLAKE2b-256 ba99731264f845a05a3fdaa83a6d2a8aa9dbb2e31bcbf085b49a0a745937e406

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

  • Download URL: ml_metadata-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
  • Upload date:
  • Size: 18.9 MB
  • Tags: CPython 3.7m, macOS 10.9+ x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.10.1 pkginfo/1.8.2 requests/2.27.1 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.3

File hashes

Hashes for ml_metadata-1.6.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 c6382478c227e843c099d4dea27ed321892421754ff8603486dd40690a90b44d
MD5 05281808e15605b9533fbd99f62f2a0f
BLAKE2b-256 e0eac19c920d43c869b274a4bb39ae1330a5c8cd42273d1420f24c4133565016

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page