Skip to main content

A library for maintaining metadata for artifacts.

Project description

ML Metadata

Python PyPI

ML Metadata (MLMD) is a library for recording and retrieving metadata associated with ML developer and data scientist workflows.

NOTE: ML Metadata may be backwards incompatible before version 1.0.

Getting Started

For more background on MLMD and instructions on using it, see the getting started guide

Installing from PyPI

The recommended way to install ML Metadata is to use the PyPI package:

pip install ml-metadata

Then import the relevant packages:

from ml_metadata import metadata_store
from ml_metadata.proto import metadata_store_pb2

Nightly Packages

ML Metadata (MLMD) also hosts nightly packages at https://pypi-nightly.tensorflow.org on Google Cloud. To install the latest nightly package, please use the following command:

pip install --extra-index-url https://pypi-nightly.tensorflow.org/simple ml-metadata

Installing with Docker

This is the recommended way to build ML Metadata under Linux, and is continuously tested at Google.

Please first install docker and docker-compose by following the directions: docker; docker-compose.

Then, run the following at the project root:

DOCKER_SERVICE=manylinux-python${PY_VERSION}
sudo docker-compose build ${DOCKER_SERVICE}
sudo docker-compose run ${DOCKER_SERVICE}

where PY_VERSION is one of {37, 38, 39}.

A wheel will be produced under dist/, and installed as follows:

pip install dist/*.whl

Installing from source

1. Prerequisites

To compile and use ML Metadata, you need to set up some prerequisites.

Install Bazel

If Bazel is not installed on your system, install it now by following these directions.

Install cmake

If cmake is not installed on your system, install it now by following these directions.

2. Clone ML Metadata repository

git clone https://github.com/google/ml-metadata
cd ml-metadata

Note that these instructions will install the latest master branch of ML Metadata. If you want to install a specific branch (such as a release branch), pass -b <branchname> to the git clone command.

3. Build the pip package

ML Metadata uses Bazel to build the pip package from source:

python setup.py bdist_wheel

You can find the generated .whl file in the dist subdirectory.

4. Install the pip package

pip install dist/*.whl

5.(Optional) Build the grpc server

ML Metadata uses Bazel to build the c++ binary from source:

bazel build -c opt --define grpc_no_ares=true  //ml_metadata/metadata_store:metadata_store_server

Supported platforms

MLMD is built and tested on the following 64-bit operating systems:

  • macOS 10.14.6 (Mojave) or later.
  • Ubuntu 16.04 or later.
  • Windows 7 or later.

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

ml_metadata-1.9.0-cp39-cp39-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.9 Windows x86-64

ml_metadata-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

ml_metadata-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.9 macOS 10.14+ x86-64

ml_metadata-1.9.0-cp38-cp38-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.8 Windows x86-64

ml_metadata-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

ml_metadata-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

ml_metadata-1.9.0-cp37-cp37m-win_amd64.whl (1.6 MB view details)

Uploaded CPython 3.7m Windows x86-64

ml_metadata-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl (6.6 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

ml_metadata-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl (18.9 MB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

File details

Details for the file ml_metadata-1.9.0-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 20dc7617f5ddb542e98b2d0e312fff57c1ca8268a2feb363df8fd4ef7f6005b5
MD5 e6b5b88563ca7d2fcc519379f86d1a2b
BLAKE2b-256 73feaa47f7262c723eb1fc164393334351d50d97da992af916cdb63926c281b5

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d19ceb072f8690ea3cec1fa7aa5e7837f80b4258fccd12ad48928b7643732692
MD5 e5629c133873866b76f08f2df6e471a3
BLAKE2b-256 56ad8feac0a4cdc9bbb53169addd1473358b27d04ad54bb340ecf65b0943f20d

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 4c32a0eee9d2edbaa56e34a3002c2aa7e9379ab9ada78bfa809781f76d62e273
MD5 3d5f1afebc2d7eafa2e46b4c55ced62c
BLAKE2b-256 395477b5e776b35500c1791bbf3e38b9a666133d461191ea7bd2f9334a05fc8a

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 83f862b10dd9452bc1b3d19c742eafe8ec9966e6c0029cfda9728023965734b9
MD5 5f2ee1784e3addf7df12416bc6c6273d
BLAKE2b-256 344339aac9b729cdc1e1652c00f9b56dde37f3b152d8ab3609d964ecdf1c0dba

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 757e2d1d0570a50889b30f6eb0de301d63b3a597eb3876ac3c0648adf82ee1ce
MD5 d2016a27fc004dc882d84a1a915104aa
BLAKE2b-256 defea061e3d3b4fd3d1183eca3c86ab9f1133ec63f3b66c657559d9b8669f6ae

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 fea45201e6832d16934173605d415a3af5fcb68e3356f72b7a6f039f43f49672
MD5 47fb13c6537c39bd012a5dcb1335d158
BLAKE2b-256 4250e1f3cfca015f2878063ed688f93cb34bde9081a273e447257927cfcc9b9f

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 7e6e65b0d2e8aab58f9cf8675775bac4eaf09ca51a763bb8d85e52a3377abef7
MD5 47e24f88372cc5baa1d1e2f7ed7a93e6
BLAKE2b-256 12b82b0876b06113095f61adcad4bfcc009e366e2f10597463c06c0712527f3e

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2c11c801bc45c002d2ce950630a5d1d7e4fe00025acf5ae48f2817f085464186
MD5 7ee024623978e734d647876daeb66131
BLAKE2b-256 34042d7a39d610c5ebe697aaf579e67df854073ee9f5d8976db7552a99d1fa3d

See more details on using hashes here.

Provenance

File details

Details for the file ml_metadata-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for ml_metadata-1.9.0-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 4a0fc23d753c14263f9a7d9f06b78ba62a8dc9c686e2c7ce2f14b03be8cc72f4
MD5 276587ff09608d9572862c0e9a9a1918
BLAKE2b-256 e339d726589c5aa5a97715317c0737f69c04433972ed9e9052261729372dd0c2

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page