Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.23-cp313-cp313-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.23-cp313-cp313-win32.whl (278.4 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp313-cp313-macosx_11_0_arm64.whl (464.6 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp312-cp312-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.23-cp312-cp312-win32.whl (278.4 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp312-cp312-macosx_11_0_arm64.whl (464.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp311-cp311-win_amd64.whl (300.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.23-cp311-cp311-win32.whl (279.6 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (517.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp311-cp311-macosx_11_0_arm64.whl (463.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp310-cp310-win_amd64.whl (299.9 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.23-cp310-cp310-win32.whl (278.8 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.8 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (517.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp310-cp310-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp39-cp39-win_amd64.whl (293.4 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.23-cp39-cp39-win32.whl (279.1 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (517.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp39-cp39-macosx_11_0_arm64.whl (461.8 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp38-cp38-win_amd64.whl (299.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.23-cp38-cp38-win32.whl (279.0 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (516.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.23-cp38-cp38-macosx_11_0_arm64.whl (461.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.23-cp37-cp37m-win_amd64.whl (299.5 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.23-cp37-cp37m-win32.whl (280.1 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (519.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d8f3a5ec4a91f10ac8fced0a1de63adfe0a795ddc898659ce11a16723c2a22b2
MD5 71ecea3bb00388d1ee2f1aeef317782f
BLAKE2b-256 8ac32f09cf203251c554efd25dc656e0e5a72da118d88618c69b3de0f9422dd9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 8094d528b05cbd9eb28e3b49fc26568dde1af06ae9f00fffe2c27c078cb369cd
MD5 eb5d97c9f29cc2e2070b3be27e2cc7cf
BLAKE2b-256 47480ce570858ea41d4f1a3c8450d9102a2ede9009ac493545e49f3422cc3a48

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c83730cc2423fbf421819f29114f26b8e3147cf1a9fa73689498e95457daee63
MD5 394c7135a4a2dc0f6a23f66f520fc79d
BLAKE2b-256 71b598bf6064c3363f4cc02afe8b8b7e8812a94222c4bdfbd833fee3e8d58b7e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 909479fee1e0d49e3d40ebb1346722116198f4b77e88c721854b2ea3e24e8f8a
MD5 2836196a4fcd669f9537396412b089c5
BLAKE2b-256 98fdce5370dcbb669aa41ca24d513e0aaf138a66faa586b21f1bbfc00bd94d61

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 f0ae941179eb7e4fda910d429ce6e0fdbc4de3a83158a19c5512989c6ba9f28c
MD5 83c239825c5a73af022b160262ffcd11
BLAKE2b-256 3161a5d1c80d719ccbfbcafc702fa84eb874ab09e85ca70af3bacb756668218d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8cd1edd6d221749f0f8acdcfe48987bebd90057044f37f196b4fc1bbbe20ec44
MD5 efb863443870c00add9af5c8791e57c2
BLAKE2b-256 e8b4af74e9dc5acaafb5ab7152544ffebac0ca7bc54234830f92aa7cb0f883f3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 2ede69664d4d053ac81e5ca26d2e8bc94684c8da79354d8ea9a75a7ca89f313f
MD5 e4a371142917b16298af5b7a228e86e9
BLAKE2b-256 39a8ecc20b05ddaeb5411ab918d67b5f2b34f937227de3a1d53f846947d3df8e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 8b18cc2a0adfa6390dd462c84e23f4e63011d5ab29b51c9ae6b76d8013f8ba97
MD5 dee9bb4b13e3843a9996feb4a15e7b19
BLAKE2b-256 e7cfe5c938eb0dba1d6218616921b9aec6a67197e1482ecd77092774d00543d9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 bb99fceeda25e55ce4479f1732741776090a4d6e22470016f8bbca2ee74f1d65
MD5 7cdf16998271bcc276d425e361956a78
BLAKE2b-256 863a05288557254eeebd55800fb46be8f1ae1d9cde93d527793c9b8ce53f5f5e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 655cd160eb19b0836f592a531853ea5328769552ef2563bb093c4f056bb83e99
MD5 3a987a420148d5b271cdfbe051141e30
BLAKE2b-256 2a4845aeb82e100128c708d8436a939d161d580e9d509869816e772b7f2c0476

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 683c13f6b94b97625d1efa2f86d3ce357543246b8f4a917801306460da4cf112
MD5 773bce4eca5c877e931655fab36f2a79
BLAKE2b-256 dd776de7cf338c0526a1cb5b973beee2ef264e3d5c4e961d4747c22e766a4bcf

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 be554fed6fa79895380a6a2f600b62af1b2e5913f030480d1436b37d69959172
MD5 0bb153b809ed1318602056ed2b330e58
BLAKE2b-256 3c0e18ed7693e9c9fd26fbf7dadee1393f2cdca05cfcc163cfa8241a890bae49

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0d4a0160824348a57bc06cd475aa134aa36f99a8f30c8f8a56d5ecb6ebfef1a7
MD5 f56e1d1e371a621a64c74b3ce03ca4bb
BLAKE2b-256 1ee974dbb7b8bb11f1abe878023a792b00d0743add085ec5703d281c5ceea149

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 0f57cdd8b54a2812c6103ee87168c53a477c52776b248698723ad780e2149605
MD5 0db4fb0606d77ac574abfbf9fc69f897
BLAKE2b-256 7291501cec2c2587ccb572cd77391f1c52cb7b137c73f8304798004e36af46f8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 c9bed1486ed8925e8e9a464b3d0437887a8a83e067f73c809e675160862c548c
MD5 e5538834dc1402f18221ff2e637fd521
BLAKE2b-256 e371ccdc2be612151be68582a15a3b30ba237c56382e4aeb4cf784ae0e0f2074

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 3980ac1239d195ef6d901d525cc6ae0aad6ba9cb35fe4447cf835501cfbb1741
MD5 3b8d2277e9f10cf1c8de5a1e7bd81d6e
BLAKE2b-256 84cb2f7ac9a36c74f06ec52f8d1834af5a107e4858663651134dcc925f20abf4

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0808569ad379712e75f81c49bd832e2337128be8ecc069dae3dfc5869878575b
MD5 5b62fd3882ccfec678139420e462b53d
BLAKE2b-256 daa78143cbfb2cd1007133509c992853710e4d9a596726ca1deb12cde7484f8c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b9ad38fb6cc3190ce3557c6ae4bb52ab1860465394724609850b41c874a1a5b9
MD5 6d544bedea4c8aa7df8b12945d26cd7e
BLAKE2b-256 c92f101edaf7987dc5d063dcf91834f4028e5a1532827d913a1f59033c33378a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 859ba8c14a6fa0234251904a7777de8a0059193551e64e206629997ac49154b9
MD5 9ff7a30fe30518286e64b8fe6fdaf207
BLAKE2b-256 4dbc7673445ef454edbabbd8107a464cd28bc2a76989a540eae11efa766a1823

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 150eec6a6beca9d9e2d43c8258ab7702cde1b1af2cb163d852bf612801597a43
MD5 79233eaa5a3f8458b43c29830f9b2ba4
BLAKE2b-256 6a6f4c550de48b5920b822dbdb173c17efad12adf5b0462261baca187a0be03c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 77c0b16b7e4f73cecb149db29b639f1ada9903c5f39f8c98a65c5f3879977e0e
MD5 74b1a7156e01f0fa87a9dbc5a9a9f4f0
BLAKE2b-256 764608fba9ebe11ac256310fa9d3e7b12a43824cf327108aa07a28a2ee600c59

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 fec90d9a053e72bb0ceb627d79bec2c578bea57594502438089932cc9bdc631b
MD5 0c3f39e83ffc67a46c1492ed5b59acf5
BLAKE2b-256 ffcd20e094f0597fa6ff3cc0a6136eabe75b5bed462b141e5e5b89a927e577fa

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 658725f26429206714c40123986fe8912934d2b0316a45c91870b71e0bd7c93c
MD5 33da16287fad863e0fa72f3b5bd38c32
BLAKE2b-256 065493cbf2090d01e65f28732be653428ddd124203b9e7c5fc7297282405b381

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 f2a94e198961f3ef8311a4a85bb272fc283b5c4efb318a25796b416ae7ac31bd
MD5 f3d0eaea55f06e1a965f0926dcdf632b
BLAKE2b-256 1088593a3102c047ae318c9fb0c0c527a02768dc91003e532e6eed24ea6b6e5f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 b76c7d4e50ed57ff9c788d245bdf476dd645550aa270d51e374ee8d698e05e65
MD5 72a306627aa5beda3919d2e3b680869d
BLAKE2b-256 13df451cef4ae8e3ed27b6e7b9256602b4c0b64f57e52590f1b719127878d445

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 27b0e6484f161f70fc6e4897cbbdd3b534dbf124581ff1b351562a5cf193f5b1
MD5 79d8889c6cd6b8143c43ce345536c7af
BLAKE2b-256 0569e1a3cd7e3108facd76431496d428f759093eed8a0cd1af1cc98c35f4a2f2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 0436d81fd344f11f30386caa003f75bba67e79dd942f3c200691d42e1199ff43
MD5 e9389561b599e35c79364f943deb2c7d
BLAKE2b-256 2c4314d23f1cc406d01e70877f40ce543e6cb01116a358c491bb362ccffabcba

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 036602eba09ccd8b4b98ab7d5c725770819a2b6d00f7b6d10ee88f96310fddfe
MD5 6410100f922ec41756ca4abbb0670bf5
BLAKE2b-256 8046388567db930d097288e46e8e82388a52d140f3d05a46e1763349c186022c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 b92fab0ff2b081c82d84d4978a2b08eeb1a9403dd4910b7f09976f110cf59d08
MD5 ed584b142613bde495414db89ebfe191
BLAKE2b-256 8dfde0d2981e025058ad545ef63737b7d83c18895765be3230813117ec4d21fa

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0ec3e75ac8bafa055430b61de8d7e3da8b608bbc4f8dae49ef134dbfaa99b672
MD5 e8b4ff185ac831761edd26ce32282a0e
BLAKE2b-256 cdce03746fc22ada12297f57a56db6b636135001ce2505857a5e46e747c7561f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 63edb6bae0a2fa488e22104b42b32ebc98cf7e3d84e1ccd4e83d9f37cd119bc5
MD5 decc05d84b078b91613221868e37265f
BLAKE2b-256 a7d61c2e1de9b4378c046bf080922e8efb9a914acf10543781b07b888b184e6d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 60da5d68817993fb16f82cd018679d516299869f53d26c0bebf00a2797bece65
MD5 cc0ec236916a953de5045032f4114dac
BLAKE2b-256 ef8dd5c15e7293646889e469fa08a632c4b3ff4ee18dc9d0584bd7635190253e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee64a055b432af069f97711024ad3e2c61448f458944215f2d6f3146636bf07c
MD5 f3a0f71e8cc5bcc7e684ebf44b30a0b2
BLAKE2b-256 5c6129f51c5f088cfa3a0b12331c3aa079c20601b26ede0febe6a34c6d3f2fc1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f3dc2f836b0ba8de8b2b0b972471cdc14014bffada5de7fd98285017bb968351
MD5 4d5eb92c905aa0228f91cc9f5ed5d103
BLAKE2b-256 93c83f6a72ae0441307b07a550ae7290ee346b3524cffeef5561ad142c3cb177

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 66f19607a8160ef006676cf1beb4d637d9248f2699db59aad81b91c5284819e3
MD5 a02e23805b79180d726e0bb88377edaa
BLAKE2b-256 3d01c3c75c4503efd4cda63ab48caea0f65e8cc09a939257327f9fbf10a14e3a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 0024d9ade71a33d0f1e6baf77e8832079bf74f8fb4a06a6983142513830ca500
MD5 1266181cc579a05781b165300eed6823
BLAKE2b-256 610628879eed0801ae732cf6f5f289c141f21b36d36d4483bf521631999d4318

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 37e1e8bf832eadb13cf75195a326a3bf906b0b6cb7a0409048d7fed97d43674d
MD5 2bbf3cf9eee462028c8e685dcd8dd5ad
BLAKE2b-256 742dfa35f16bc86c0fd6868ead26dfc5f79b648b38325bb8817c94c2f5b03a89

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5eafd2ec5dc074064b861d2ace1b5687c785c431bdc24e3511c2f5bd27d31c3f
MD5 b18538ae08fc583e358f17d4e2bc024e
BLAKE2b-256 45487ec04912354edff9bc78f24c9bfd66b90dbf63fa5109f10b2ffb4ba7ba18

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 3ba7228527143b81d416b7043d3f99320fdee39b892e93c7f7a9bafce84ad9e4
MD5 6cec89f02e4f92fe992d2ea2faa62c4d
BLAKE2b-256 ede9c4f7f33e819562ba0d13b2aacfe15a43f506a820f473e790ef080f7d5749

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f3a79dacc23d281aea72e5cd741681431d6506efa96312c9d4c6806daac2d69
MD5 1820660b6f046d1d46e6858849cac134
BLAKE2b-256 e42db6945a1364e1c7f7a8ef77760d7c48eb7c9775966c890e128cd60917d4d1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 63e1f5f20df183e8f6f5eeac5d85fe535c6eb7f7e38d5ac664bd051d49100fb3
MD5 38111d8b17fc6c6ab07d84e44690b90e
BLAKE2b-256 556de0a296c7034db3dd8c2dd0b17422f9cd0da212173cbd4d193bc1cea79c7e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 23d4ff5a43d539a3c3b5649d9149bad365c5aeedf9d990ff3e352af9656ae359
MD5 bcf8cbd79af40d5ae5eba4c751dbe937
BLAKE2b-256 a919626d9e25b914a0d5463898bbb137cdb944ca279f0f5dba5bac254b456190

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 35724df89cac78f4dbb31ae309c26db7a879ff6f662edb5f4e1f082b0429552b
MD5 2d08690f90981337f2265ce3108c5a73
BLAKE2b-256 369d4d65c8a960d4d6f2508028f856cbe0a0e72a329a952e84c17994ba64ecc7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 c659265544fb576d30422ed42c112a119bb1529e4d293c0d5f849f2e37ef7c5e
MD5 a16901f56bb269e979ed3f7974e609f8
BLAKE2b-256 558cfe07025ccf0a60ffed170e1a35e618b01edf6be5b451fb6bae3d2cdc1ccf

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 84d06d62e5efab8f5411f0b3655b064a619f366d220741237b398c34ae6139e2
MD5 cba3401837c7d8363eadc127a6ac2523
BLAKE2b-256 57d6f8bdc7e71d04b3ae9cb5c768f7738e4ef256fa67688041769663b84a3eda

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 01b9ebdc21dc207f5574952934c0c7b2433e999c460b0150c0ee61072cb75548
MD5 dff52a30b22b57ac0c7ed0e621fdc257
BLAKE2b-256 545abdcf64170a3144f2a7db1705f35181f4a10d778e00bd8fe23865b012c4a0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 968f801198f0d481416ec5021617b0eff6c60f2fb8c443cf28bcbab433bae94e
MD5 286bdb139ffd9bbd3bd708d02adfd1fe
BLAKE2b-256 c5789d023fc1cf6dc47c8027dbd171e29d6b2691dacbd47e351ff806a0f758d0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.23-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6682880688013d8d8c70d183cd737ad7d9d25e905c767a755ab744d86438224a
MD5 dcdc046fc9a0f6f5a3bb9e8897dee57f
BLAKE2b-256 20ef54ef8fbcce5ea6fda33fb04e9f17bfe433d93ce7f893563eddb780375321

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page