Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (607.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (606.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (606.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (605.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (555.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (579.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 0dd30eb358eef87fc9b23961d0656e97dbb65e132effb00d70e8e6008d0fb946
MD5 0bf98788903dc960f2b672ee05742c4e
BLAKE2b-256 4c04c3bbaffdec62e8f310b38cf0e2aeb3a5696360089c530901129863e2c94f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 1157798ccb47f7b92a4a2b37f066bb6adb1d35b774d467f0433c505e4774992f
MD5 e26481b210dab1f55d2a148f9faf0ab3
BLAKE2b-256 61db8059b85ae9c8859a558dc68c9ae596ed13c5b04433ff1c836f34f1c748ac

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8d2c5d7ec6672707d7db23b1be148cb59522a33b95428c6fb03837d21bdf719b
MD5 f62dd533c8dae5087d20661fe0c8b4e2
BLAKE2b-256 e55f4445be69b6e2eeb899000030f2187d34df43ef04a464a829e5fcc36a8905

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17b4bc82ebd3ac06a75f14508adc4a530d74dbbd67a52fe0e144acb6fddb7d16
MD5 5153abaf54dc63f995e2d9e66c6df0d1
BLAKE2b-256 5a07ea5de2e53b029b707b05de3592ae188b1574937ce9245b48d666b6d2727a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 368bcb8cb883e15cc400470cbad7f74c92c49d01bbd9f906cc1223d3987755b2
MD5 7ee0164104b651062cf0930088fce058
BLAKE2b-256 0ea74f18c62042c62f15b97f34ad2dc2df8344ad97f48501e25f6e77d7bebb78

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ed158ce0f21e7873e2900ca6a9985d2cf5992e816ed579334c6e613d42d6c4bb
MD5 215a520932e2e6d751b24b122ca25aa5
BLAKE2b-256 7dbf5d4c635cc13871f47ec6a5acb404bdfb3606048e55031edf20130263f5b3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ab074c6bd259f4887f0c5c46c3a8339888fe15a23fcb424567783255ca496ce
MD5 6650b7984344977185705636e7ea4f82
BLAKE2b-256 5c759ccd4060a3c7ff0dab62bc692542a001c6e384f65e4594380a97d1d38d4a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a788d6450a7ad3bfcfc31dd4a9fd4d711101ae20b901cdf15fa72dbc342f4f56
MD5 718d214b911b2a437c8d775a6531bad2
BLAKE2b-256 8b523a169d8e64782d448286b4b7dc144b46f3674ff529315be940c41053cbe9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4b067a0fa7dc2868ff32c5153bf8dcd8ecce7af84a5fd98e739d2703c2030ef9
MD5 3803a4694a002c2ddb9b6c6263a63f2a
BLAKE2b-256 8f7ad353c54b95a6d3ade6f427e54329d3d4d60b11a97f0138ae140ba3e59795

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 09579f9ba25043e6b0d1a80602e81fbcdfc430187f115df0bad67910929006ef
MD5 9c89af43080aa9ae902f10015fb5fccf
BLAKE2b-256 79184de4a5d40cacbdfc60e69c98d2d7804eba18d0c19969149c025351b3be91

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0d6a1f7c3db6eb93603ee20167e660183feb5b4459f0c6659f18cda808ff499d
MD5 1513e566e2c492266fc61d089edfbe0e
BLAKE2b-256 fad4334b401639af5830eb2aec56942b45338533e2c4da32b1bf7a4e206061bd

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c39097789c8cbd54d5800c3e870462d98eae920423fab34051908a22dbaad3df
MD5 141677c3c15ba4ed6e0ca0c0c627d632
BLAKE2b-256 4e86639114c05472dbe07a4671f1d4e606ba6b29a434ae4be1f99585965b0b3f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4e2798016d0a2b5cb2b14304fc788fab10cf7502f7cec1f04290fa5e12ef75d8
MD5 0917357dc68c4eaa1bbbb749c9b9da30
BLAKE2b-256 e951c4018723193421e78a5dd63f0f79c3693511fe21c4ca7bd12488cd13875c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 aaee1d381a56da9226df2b89ec6f54258191d278de7b65af474050908cb958c9
MD5 ba3e470b2e3fb2cd6e6d845f91900776
BLAKE2b-256 0df19685d5dc0f20d7fc4ffd0b652b9f3ed61c10640d6e7a9426897ed89d4bc7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 2868169956bc5e7e6655fecde4a5e58e653007a3f3abd962b035ef06e556b953
MD5 28b12a401453184b2da330e6c7ff0b3d
BLAKE2b-256 41b7fb77af8580baa97504389eb88dcff24a895a6ecfa9afc53bc139e586abdf

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 44c9359de4d5e11a5dfed19a71f04e3933ea4cf585ea103c84e1b9ff62b5c674
MD5 88688231aca3b2558455a0ec67d59994
BLAKE2b-256 f22893a69e03bcb978cc49ef575fa240223d6edacf5f20793236bfd5795b28af

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 53803dc84b9ed03070adcc1f443edd48e67c8ec36d13807e44092a14f037063d
MD5 9064c33bcc4b5147c3629560ab104069
BLAKE2b-256 a92630170720d71e932e30ec02eb3e862e57a2ad6a76fb45107104125857bbe2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 68f5430c2e5f6aa5583ffda255fc2d542b01a4715121c7b4c6491a08394f300e
MD5 78189e574158c1f62f70bbe1e3a2057f
BLAKE2b-256 eac8a5465f4ae2567a994326abfc9053b948441264e29298686abec02d7ea93d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9029ad7d0818040a3c5fc26e68d7c054e301db0c1e653c1106d7012990f96265
MD5 37a403527d8a4a5b4d99c1b0902d6003
BLAKE2b-256 f1c4fc71faa40c9ea85b8188cd4c839ae98d00896f2065d00016a7d59bef130e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d6d3d492ce29574c128e580f13dd251796599350335471e497be95e3fc7c0347
MD5 7f8a56ece25772e02ad4a36aca8631d5
BLAKE2b-256 02611dbc904b60248a412251ec47a7d65a86e63f6ffb89260abbdc230fad3894

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 562e2f782f0aef9d98be802ea23cbff5fe484bd641dc54d1b8fa0d24f0137429
MD5 f310cd74fda5468c006feae96ab9b208
BLAKE2b-256 0c27d50405f1421270275fd8a257d57e4e4f466734dc625ed78abfe50326e890

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 30a24594e32fd1d46f2cab3be57fbfde48788e9e6582f67ef527317a81eeaa8d
MD5 e424d1204e013b7828cbe0e55f7e0876
BLAKE2b-256 b709bb9c652008d401729a9722a9f0768d20eb48150b31afdf9ccf58b09c79dd

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8bc7016305e1992c07151406fdffc3ff316985f5fd5a53f26a04571d1ab8a9c1
MD5 b4d6537cee60ea5eadde974f9382c45f
BLAKE2b-256 65b5522fb27d2debb00a80c7d26433c2eda685588de4f602b0a3d38bc6d20e64

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-0.0.1-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7cf294d695d6d3f1a2814af4d3fdef854d15fa121ff5c9762687c75199a7a587
MD5 4f50fd0bf83a0aa3fe1dae591fc65706
BLAKE2b-256 c3fdd0f5bb8ecf26914f26fdffc2900dd5dc6b99c0fce9344f3e3c8820d8d2b7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page