Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.12-cp313-cp313-win_amd64.whl (297.1 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.12-cp313-cp313-win32.whl (275.8 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.0 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (515.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp313-cp313-macosx_11_0_arm64.whl (462.0 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp312-cp312-win_amd64.whl (297.1 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.12-cp312-cp312-win32.whl (275.8 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (515.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp312-cp312-macosx_11_0_arm64.whl (461.9 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp311-cp311-win_amd64.whl (297.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.12-cp311-cp311-win32.whl (276.9 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (492.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (515.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp311-cp311-macosx_11_0_arm64.whl (460.6 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp310-cp310-win_amd64.whl (297.2 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.12-cp310-cp310-win32.whl (276.2 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.2 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (514.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp310-cp310-macosx_11_0_arm64.whl (459.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp39-cp39-win_amd64.whl (290.8 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.12-cp39-cp39-win32.whl (276.5 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (514.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp39-cp39-macosx_11_0_arm64.whl (459.2 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp38-cp38-win_amd64.whl (296.9 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.12-cp38-cp38-win32.whl (276.4 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (490.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (514.0 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.12-cp38-cp38-macosx_11_0_arm64.whl (459.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.12-cp37-cp37m-win_amd64.whl (296.8 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.12-cp37-cp37m-win32.whl (277.4 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (491.6 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (516.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 d3d18904b077b80662fa7745b3ab0301dc39bdc78aebcf488c937eedbe56e0d7
MD5 b24430d0534efe65160e991244e7b8db
BLAKE2b-256 de1b86606d0cedc80dfe34ae835080c8a969c8c8fcf393b2d704a214ca19ac6a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 45aecbb5cf45dc1db5f63dbb3b1ff844fa57851e6c55aa6360f052a45e5dd580
MD5 1702d1a2c4bc54044fea60dd01f48727
BLAKE2b-256 552b64dd605dd23a3f2797d4836fae0dc1ca380844ee9f473a67329b14101e8a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 aabb4547f3d99c4cba6d24d275c660956b4a294b5050ccb6c85f4bd80b497bc5
MD5 d2cfff4bf47cc209aa489f388d279784
BLAKE2b-256 fa29b7ad523efc52b43b95fb2c85d6c1af50f7f751f0b07972856e963633d62f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a7c2835a166e5723f6a129f61a17649395199afe18aead6502c694b6deadf244
MD5 f0bf02b978b847c70c7bde41e6f97015
BLAKE2b-256 e5160306a60a311b47496aa043f023ba158cc67bed8ec138e3a897f5e03b5753

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 100ca086a2e5f00fa0852868e35100a7979590f91bf2d126651f5072b52460f9
MD5 979354d04d33e1bd3b7c93fe5627bcfe
BLAKE2b-256 bdb49e8db94b947f67fb53c466c937cfc5c5067718384151b32e771901e4c99c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cb82731e8bede7fa52950e8a36426441f9b3b0c582c20e58c1c20f253307078e
MD5 d72aeab3f0c733b5c6c78779a3dd9b15
BLAKE2b-256 2b42aaf81149591fed3bae9576929725b4da5b0eb831fbeac81375e0da18184c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3d7fe0eefb5c924da5f5b589e3600fc8ac4c4467e0b4e07512b41cd9d5360758
MD5 7625e08fed5690cd190738f39e8c1282
BLAKE2b-256 94ab5cc2c81bedf5cd62163887ee6a2e703338f91958b2cc15309e7f5d2421e3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 4e231cbf58a269982931b1256b65f9a2677069f43c529643865a8bd4d34714a3
MD5 1dd3130b52b04e3b9222b72265bd10c7
BLAKE2b-256 ae07833c977ae949dceb58f0ea411f6796f0d50496fad209b951023f47be7af9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 47a9ed958c252329d0602898e61e63614429b5c29e8958c3823f6f9758514689
MD5 43bc78c2383ad9ba7a182d9d75f1265e
BLAKE2b-256 c6f7c0f0416bbbe61be9dae73cb4f1b12ab569cf1e87e6f157c791bbb4b13aba

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4c8ce6153db43bd2e58c0ed9d3cfd2020370903520d70ed20d40b5409b465ab6
MD5 a22ad10b3ff0a2984025f4ba4721dca6
BLAKE2b-256 93b792fb287c1e696dc3c926ece0c17f61de5cab862e6c71823af161201a3c81

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 98a3a380d82c936f17a27ee1a3884ba36e7d0a9452128929cf2d99e542f5dfd4
MD5 486c53f360eb575134d2cdc0c06dcdc0
BLAKE2b-256 af27b9120bf4e4e103feff4e401e041beb8818adad7770e0d38e3c148cb22b24

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1523b2c05aa669fac9eedc1f92a09bb59516fbb3ce6c99030c6263b7b98671ac
MD5 63efe80a57dcb4769db8795033530de2
BLAKE2b-256 3b689b931f0a21605921f2eff99b92a4099a7e81c4d582e17fb8d5a8f7998beb

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 b0e0aa1c7ba3d611e6093f4302ef99bdb01878613111e62a615166f6d24e9a84
MD5 32d3b5e908b0eb6b71fa3da4fb507738
BLAKE2b-256 37c09811cc987ca4572f82f543051f1f9fd3ca472b66dfef23ec6a9c6717a9ed

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abdd596ff38f2c233004161057f06280abb167b4458ee0c0af44fd61fda2b143
MD5 9a70b228071b288329c111bcccf86af4
BLAKE2b-256 74bb254d39d49ddc8d49d612ac23345fa47bea276779191be68b6f9c46d7f88c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 b7d43a299f060a768adc76d8f04c555ebdac0bd5ba97dca720885be720fe4dda
MD5 1abf80292bcd55657be45a5aca691f7f
BLAKE2b-256 54b804b38e30702b251c25d25838af9e63d88f912853c5ca21d5872a55a66475

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 7e0502c0e28ef026e0f388b0633c5258d73d653b39118d4b221813219b6eb96c
MD5 79c15ffb1ee1f870a9fa5f412ac2eb8f
BLAKE2b-256 b3852e7d80a0ef776e202f438205fa46a4a41042191ef3f98efebc67717e0e63

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 354182a37b8a0af81b4a3b10aea370834f09449794bb8e52fb2eb9a4fa366fd3
MD5 1b1f9d1829d946e32492dc3b9f5bd2ba
BLAKE2b-256 f261eb665dbfea14bfecd44bc58727b65ca2496437dc311c849e62dac3b52055

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 2c3a5644dfa505c43dcca9f967119f0c7d8f0ccc945f006af0acbe9160c63b1e
MD5 dfbc10d7763a882f98db76ef1d9d4ab0
BLAKE2b-256 dcca32d464a820897c378fb17d03d842926b95864a644e56869378022207a384

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 097635220d9aa31b741dba6ec6d7db549353e4b92bc5aaf6b4799b5fafe0f468
MD5 b01503ef3caff6a31af06bf7e1fdc563
BLAKE2b-256 5258930358d196b3e73b75dbd209b1808756f5b3a6ee04350cdfdf7677f0280f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bca28a573dec199dbb883d75bd500aa1b702438c73d4c959bc1fee33789d296b
MD5 8f2316b610f66371ed90359dce49818e
BLAKE2b-256 5593fa0a84b9d56cdf13d6a0ac1014d78ad833c39316638df16b88b7c65bfb94

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 abbce4b297be68382f8a48732d508b4b67cf09a9ebea916b75bc4565988754f8
MD5 8421c00c59f97f116251473ad80e1c06
BLAKE2b-256 b94b59adb0119143e861362f4eb953e2c5fd5891a51999bb5f1bdffa362c6d6b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4d4bc8de67b3d540bbb752369e40c94f53953ccab4f702b069522485199ac119
MD5 719c91c2c6843782f9a6e9f73c5f8368
BLAKE2b-256 a607b5c590b5c245ed5da09cce8060bd2d30e422bde68392eaced7f0b5fbc0c0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 615f2e3c4e3f29cc07b670ded390e66b1f029081545c0464186f92eefc6f8609
MD5 709eafb4afe8dbde7507fa73086e69e0
BLAKE2b-256 13e4055a3c60fcb73fa84b9818851e40ce5dc55ed1cc1045db3998bae8415f33

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a3ccbe0026d2460ba949d6017d92f3ded74d0624149b99c067268fbaaf05abbd
MD5 d8ac2f5c18c77701e89508e2e99bec17
BLAKE2b-256 fba40cb370df966b72b4139eb68ab866a3a0d2bd460041a7b55216ea3327669e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 9aeb8ac3c66df36d4d69a00a12186d4657a2085132b56332c1d7731477911b9a
MD5 8885d2cea91c5bc7e6487e76ce2588f0
BLAKE2b-256 4b32a6d254a28e96cf0012ff3d2cf68885b4815b6a2a18b23db414cbd9fa0a48

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4f1392e19a0ac9abdd610a13aad1b1998fb1d45c3569d11f61da16650b0ca3d1
MD5 7f1754ea19a4f635c7d69d745964e6a8
BLAKE2b-256 a67c9337ddd1b879580714b1c30d78582f392e2ef8e6db5056759275f4b3577a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6c8f1fa1ff009d9fa021b559a5ea0f89d844748f0093927756eff3d3c0994c0c
MD5 5a8a5cc7a2f1f9ba514fed17228da7a9
BLAKE2b-256 2a9aa008c9d137df2eecd2b16271631cab874a6dbe57aad9815317edb753c5e0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d40ccaad19de935db61a4ef1922d78b2d0dd22b4ef4626b6986e848b05138802
MD5 f04b8df65a8466108f4c1d0d906ceff4
BLAKE2b-256 424308af3b090cd73fc02348d01dbf405b78c7992e760269268c724560f46b0a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 df6258775303e58edeca655aca76f13d20eb76ea27d0118a0e7bc319d9aac738
MD5 6d8aab63b39cc0d44df17996b3fb4941
BLAKE2b-256 cca44f3b25c45d326c9e677a95d832ce557c040a3f22b89f94be22b27c8867b1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 cde877a3219087b412f86f7c8f70afc6acff16588988ca488bebc2939a490291
MD5 29d45ade082c46a56ef7297b99c913b2
BLAKE2b-256 c57ebf76f4a1df40cfbd6532682e3f6fed28a7e4e4b8ddc964b5e00e87bcfc74

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a863fcdd6f272808239f837705eb4bb72075dac11d0a285432f127e08e095a60
MD5 9d19fbbf9afe61cc90bb6013263570f2
BLAKE2b-256 16594e171acb5db8e030fd00d0cebcb6dd2c2ff00f5e5ce8ef321c62ab28c07a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 df6c7f900aa1ef6b4ce628d10e65c51a36cb52c52a6ded86464a1145a67345f7
MD5 447e8cbfeaadafcffa3c09cd9a8e9774
BLAKE2b-256 ea51a115122c55142897131086d88deda97df32c0e9210b6d7748f8cda742544

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 96bf6c4374e2a61ec0ca4edb640921b24c5329d3e0a170100d47833c2ad6173c
MD5 40a980ff91028504ab9906b2cac0d061
BLAKE2b-256 1d2585f26a0cee05a3db85295312cf158de5f089e80729bd521b6a316ccfabc7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 cc462dab01ae2436845aa78c8f388dfb76241b140f8db9d55a089da8c71fdcf1
MD5 03a2db5f139a0cfb95e452133e88fea2
BLAKE2b-256 2baf2bfa4996bda126a59b369843f2920db8a2c8c6ba5d914ae60886cdbe01d0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e04ade5449b67a72d62d237bdf9af4bbba1daaabdca321abae36eadb0414ab02
MD5 bab713670c9df29ccae573adf8d0293b
BLAKE2b-256 d9a260dbf730485d98262f9768ad216be66211954b23e91eab0a274563a430cb

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 50207db25c839c5ea17bb4ed04ae2c3006b885bb99fdd88de619b14e8fb27f85
MD5 28e420e9d65c78284954f2992341d70e
BLAKE2b-256 7f5a79097b8f808ff5d875686ef31c2afd2c2f8acdf2bff4c16edb8dc0bf1f0f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 9070bb9cf8dbe38d12a7a8c3dec502cd4ca4343b7e8f3cb52daadf572d3961c1
MD5 9ff7d6bae7492c8ec44bf0423c6c5aed
BLAKE2b-256 ecc2c667c5128845931f9927dd367af2b52c30b473b63f235f10a75fa2ad87a8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b93862bedb1c11ab5fd02f97a2ee280d3dc710d5e22b79d944787c4df0c4205a
MD5 adb2d8b7e33adad80e75bdf34d26e378
BLAKE2b-256 56469077de71800a0c02afaf581b34c35859f10dcc5861ba04d4e2aa6562e087

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e128beed530a08d7cd4cb2c6d2510a1b6ad795801a2be4fc9676ef83e877b418
MD5 c797054dad7acbd088606dc0b5b8a651
BLAKE2b-256 18fd3da58bd6c7f742b7826a1e50a15670dbafd297c3243979a288680fb7af41

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 960a811cd6392de9cdc94eefa40aa5bae6a42a5c6a3a0479fa56078ce66ef7c2
MD5 fe0f85172c19c3daa0e76966f5f55376
BLAKE2b-256 c8e2e6e896dcdabc415cc66f755b52e8e514007beb81bc465f20e7e66fb4923d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ba071b38ba462aa8f5feb2f251afb0772188f6e914ff8cc291f5368dc717de39
MD5 e0467fc385bdecf9c1d01bc16f0e275e
BLAKE2b-256 446ae6c7f25b52842132bc06710882af9d38debd6bf108e318574828829f3141

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 25c50ebb64faf3df8a3b174393f886d694bc165c6db7d06e4dfdcc1465d62675
MD5 16032a2c8dda1923c94622601044d7c6
BLAKE2b-256 77f058add06c8aa3468a81f424d642a91f1309ae2ad2707c3c2f2c0526fed4fe

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 93363c8876e3ea5a94c52b62952347ba44c6e907766d5d3f0c9a5652b137727c
MD5 bc4269ad62cb360771a8f3bf9b8c12a9
BLAKE2b-256 6f7ff5a3fc1972781231c7772f617b4356e980d416decf8cea62731fe3540ce0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 2258c884549f7691ac57f35109ff57ef0c4efd6e6148dd95881309dded149064
MD5 239a6f4d76ca4b0763395684277e7d81
BLAKE2b-256 e4178b28e61b1ecb226ff4598081ca882381e55dfc9b01edef23586c729a2ad3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c45e5c66e46fde49a7773bff9338246a336325171c9cfe20b6dd16c299f17bd6
MD5 cac859f84d42247afbbe9ad9229d90eb
BLAKE2b-256 b652d18c43a6955c92655d0554786bde46fee173f68ba74097d5bd5167c7369a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 47239f0de43bed2cf86f6edc6519f85230b0820f1bfab26ec331b9ba26cf9175
MD5 dd7fb064ba5cfe0d9fe22198b46fe905
BLAKE2b-256 d22332c9a0370183c3c782be344102ddbd7d381c518a38b1e0c201860fbb7fc6

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 8376560069b1bf1de284bffe02c599446e47e2b75c473e56e6effcd15b2541c6
MD5 fcce8784e5116e7a9243363859c55b00
BLAKE2b-256 78037c92eb65493e5d7aeceb7cb59e48b5dbe094a9dceb5aea7d06374da1cefe

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.12-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 abb3d75f1b74619f555890094c3f0df536bed763d7592d81f590b839a4d48ef3
MD5 1428649fd510ba1ba33c2a20432c2f91
BLAKE2b-256 b05f403417de5094dd122f09c0106952ce7c223815c7cbb4676758adb38aa590

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page