Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.14-cp313-cp313-win_amd64.whl (299.6 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.14-cp313-cp313-win32.whl (278.3 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp313-cp313-macosx_11_0_arm64.whl (464.6 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp312-cp312-win_amd64.whl (299.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.14-cp312-cp312-win32.whl (278.3 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp312-cp312-macosx_11_0_arm64.whl (464.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp311-cp311-win_amd64.whl (300.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.14-cp311-cp311-win32.whl (279.4 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (517.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp311-cp311-macosx_11_0_arm64.whl (463.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp310-cp310-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.14-cp310-cp310-win32.whl (278.7 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (517.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp310-cp310-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp39-cp39-win_amd64.whl (293.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.14-cp39-cp39-win32.whl (279.0 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (517.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp39-cp39-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp38-cp38-win_amd64.whl (299.5 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.14-cp38-cp38-win32.whl (278.9 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (516.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.14-cp38-cp38-macosx_11_0_arm64.whl (461.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.14-cp37-cp37m-win_amd64.whl (299.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.14-cp37-cp37m-win32.whl (280.0 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (519.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 a95695b60f9659ce31c2962f54a9a8f7766f33bc0e45bf5f961b3e29626b6eb2
MD5 d50e17796c179ec71754f85e4369dafc
BLAKE2b-256 9e7398b06500c17406b3dd5552b7df5561d4d9384208ba67bfd7f57290b77c3e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 7390639632e6dd47411494cee12205128fbba3a40d57f51369b99ec3489be89a
MD5 31b625280906c15f3d413b035f48ae24
BLAKE2b-256 16b06c121ac5d2f2d146a968da8f8ff3999a4c1a4cd93fb125cc70257cc788b6

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7b488cca8f7853b8debf9f0b3f20b54e008d65b061df40ac4c3933008e68d232
MD5 0cfef5e2911a356a79de0aaa04bdeb2e
BLAKE2b-256 bddef3d2cf2946995371d14189efe1b3dd9b4edf9d1cfd2a1be1732bac1a3a1e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5b241afae453379d1328355196b861b88d7bb4610a23f01de7be4892b5dbbad1
MD5 438ac386eca3dcc3200d6eb92e861011
BLAKE2b-256 ab996a4ff75fc694e90d0f9c8549cc1fec5b1087a969634ee98032eb2f96eb57

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 98b217c76b6b7fca238552b8df40fce2adfe91187d3b37136b92ce3c9df61232
MD5 9bbe14c72f31cb8e63b410c66208cb69
BLAKE2b-256 de11de05b2754368f62b7245d630cbb1941dd2d310791d8d84342dc4c6bd28c7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5446efdae98fbf751e7b0dbe6c751028037e05aef33060608d5ffddc126a4935
MD5 16a2858edcaabcac7142ce834391285d
BLAKE2b-256 01ef6f9b53332e6b69d19e730dd5cc9874cbc63a66e05406328dde7d97b464e8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 38bedbeb46f3c9dfd6e870705a4c4ceeca7ee25b8f6f79e6805cfa56c98159b4
MD5 71cd6ebdc363e25d39afa5655ff1dfac
BLAKE2b-256 21eb2a164d5e94b1e530052d2da4f3cb28db74e312e13e006afda1fa0ffabbde

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 e08f26653b225eb4565f4f3809718a952f51ed3589f37a130c027becd69a163b
MD5 7a400cba69232fb0418148a0463b17ee
BLAKE2b-256 1e76411ad00454aaf94cd77d817ba86e83280cb279f475035b88407099cc1ba1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 b359815ea5996ffa2a4198e099906bb8ad8e5e53f5c76ba16aa5495487b351c7
MD5 669d42909081b250da0a9574cbcfad99
BLAKE2b-256 91b02e7ebed9101192a78cf37e92d03df5b73e75f5d4c1a1cd5519b8c47f9276

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5a25faf6055443571310b28f0949c598378e480f343ea81014642462b8d5f04e
MD5 7e1ff6f03f30e044aea79d2c25af14a4
BLAKE2b-256 be5365cd9a08f75ec28b42f8771838b6c99e1a1114bdc8b9403df6fa846149f3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 645c47481b769e5dd2cd6508e86ef6093b15139baa89f60f699fe397bdb2924b
MD5 0d155ccc2a8585f81b12edebeb743a1b
BLAKE2b-256 232254b5f814b7b8c39bcfa41b31eb20d83592b2e604bebce27c28002f3f82e1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e5eda8221ac1fe2180f41b9a38a1a583bc36a5993739f0ff281dce677b198324
MD5 aafc2e647a0ad67f1e101c923e78f55b
BLAKE2b-256 5014b14362dbe29653be4806730b4ce887f281ea476aac6dd3e5500ea1e5ce8c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 3aa9a0d48c085dc3b25d87175db8ff10c00378f9c3a61e721875645effd1ffc3
MD5 cb2cab4ffb7b3b64f78cf71d70d7bf3b
BLAKE2b-256 8b278f372981d905c2e97b9bc77c037dd1cd4aab7a0abc4efca45f5cc18718fc

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d1c3232cf2cacaecc002924d0f409228be1407d25b36607adbae7b780983deeb
MD5 d8a286841338caede7a095f2acc7cd34
BLAKE2b-256 79e7503c9baa5a73c9d4df00778dd922e0cfca4c1b957f8067efa34e12ecff72

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 d684a68c578eb563115a2cfd9737446a4a3a2ea9ed9b74993c064a3d0140a232
MD5 a0c8f49b247a75839fc8b6c280177d68
BLAKE2b-256 dd613af054edd17e1a2e8b4b5782d5415f16ba2ca3d49308647966cdeb41c294

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 04a7c79fe8e3c42880a930b024c93378dd70914bd4c5a54e859c1cf6e3e7997c
MD5 191d8c2efc012b263c057d6e339c37dd
BLAKE2b-256 93e2082960ca94a03051d526a820eeef90e4999a9868f9db2d8fc8773fb9e2c1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6999b6321ad9b39dcd25fe11d3cc6eecafeb0d1ee1653648a0b992a868920508
MD5 01c92f5a20071792d082cb5c3f4077e4
BLAKE2b-256 0b53dd1238ae20a4d9e6566ef329901d1d464dc7e560d0f20ca45965677f4ff3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5a12e84489db815d5f0cc1634b0be26d8ee365896ce79feeb965558997ec6b59
MD5 65f3ef5c0b57b17b89ddf76e8ce3757d
BLAKE2b-256 feed90f2829d5ec8c24792252c209d64d97455c5f32ff7e22b74de6792fd34e0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3e908377292389e2925f8e1d02c90ff39401364f5b1662c0045b20adc9afa313
MD5 34d2904eef26313feb4f9617bfd383a4
BLAKE2b-256 252928bc5c693b75c5c4a7d3df7782cb73719589ac28b023712209f3ae99ca02

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1408220490105c64fa18a86b9f9e9e36db3017c03e4e4c012b6b9f46723e2a7b
MD5 41c6cd37815208cda789e94b2a4389d4
BLAKE2b-256 be33a76854853fb0a80e7694a2ac8fad9e9724c94e9c14d2219c42f15129c810

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 50b33218a0940e81e21814460af0de73955c189d9e615b6ddf6f7604307f8a77
MD5 23ab0fdca233d8986358585f93d9f0a1
BLAKE2b-256 e65d2c40de8c5cad2e082f79dcae7e0de7f5dc02e2e572c9a060de379c02e166

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 e897612f45537bc50578bb64b85dbc3f1c1850cad3b88caf0e3feb2d274a0215
MD5 f306fe6dc8ab29c16b5ade1f9dcf0087
BLAKE2b-256 7ac1c689929edec0566f3c9f125ab59be63d5f52aabfddc2da14b974fcd5224b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 f4e52a7b9b6cf5f9357f5c560add6ff17246a99a80dfd7b9ba7400afdf68da14
MD5 2368d8f8ff8ed88cd8e42ca2c226d427
BLAKE2b-256 a49673d90d36657b6abe01e512cd865e67f1e34612949d7b81413ba0ea0f5cda

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 29a4eefd60ffc1c30236f630cf07446d861fdf4bee78bab8dd9881a16b407995
MD5 8e50a25c61880ed5cb958e5f8b7bf1f8
BLAKE2b-256 14f7a94fd30f31de63e9574d41d933514580483ee420c30d84b1e0730122a734

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 823b4bd54cd22ef9ad2b08aa22c552d60ac98aac980b722acb5f520fcb83fd1e
MD5 dcda3218cc921c4a0f125140b8659ce3
BLAKE2b-256 0faf41475a88e7ca108bcbe1792bfe14f2ffd4ea268630dbc2a40d80520d04fe

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fb26e00f736d48fbd3e80baefda6fbc80e72cbaf551c514864dc48980cec13a2
MD5 8a9b2977b418f94ea26f5aeee958beea
BLAKE2b-256 9e549eb8cddd467ac7817d9ae271816ee5eee5ffed621c3fc2860d522e872bab

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7611d78fd3410a492ac7beda4a5ffe898e1feec98b88f420852c81947a035717
MD5 0bb5d9e41fc27d9974d8186d2b7dd62b
BLAKE2b-256 469a1a5257483ce43edfcef6fc9327c339dd29cadf734b795b2e646cdc2f3c84

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c5d7a7e0ae3b79cb988868b88ba06ee53b65ce59a179dae686255620232b2571
MD5 60437cbb997caa759309ffa1e43da9ac
BLAKE2b-256 d9751bb18d93d36e78e2017d180bec06d61969a0a2794572cb45d6ad784e7016

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 a2832905e92a44aa92f5935e006fff0ca1a06fe5297132728826d165aaf7c1f3
MD5 6c7d0c5151b3c6dcfcea38c912158556
BLAKE2b-256 a91a91ef154e18acd454682fac916dca5d05c8d0de19953b3994d99a18282e9e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 e0493bb49c19b82ff1adbfafa803a1c5a52c8a6d0ed6c5075c44ac947261d8a3
MD5 1eca50c9d78c5a139c839c9c4ce24a85
BLAKE2b-256 cd819a3007be7e0e5305ec8f0e36cd17a1d90ecdbba641eb16f1c42e0e7b80d5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 4fc137ff8508aecfc65720cfb483e4e9bf94b6d1cccfaa0af382abd802dcef06
MD5 a4309f3b309529999a6a73021e6639df
BLAKE2b-256 045fae16cf313bd001098f159d32e2410485433d6f4c58bece2b9aacc3bd3853

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 22a1641f2f06dcc348a20daad3cf27e26315a126ac5d10160b28eaab10d85be2
MD5 68f98e20c3fa03cfab2a043dfd2e2304
BLAKE2b-256 c2b916cc96cda27145ef73b96e6d639fd3d60d6e3bf2aa07e1f5b7c55bc2ed40

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 42fd7ac6ad3ca82e8c60104b8a0b1383bcb8a692f79773a7ab2f8c3ebd4bcef6
MD5 344df2051904c0f9673a6ea1bed58654
BLAKE2b-256 d8523df5efcd23a958f23b758d56b6c5c19d75790d563f16af907d723f11ef8b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 af216b03a6ff4377bcd7a35fce1451b492fe6a37928d0cd0107954c6e6d96c95
MD5 971dfa8f1bd7b19350f7d6bcd8f840bf
BLAKE2b-256 ba9548bf6c332de9b560f3e727f6c6174454f0ed438e9a7b3d5ac23c60651095

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4eeb4e81ad93bcc924d49d80b005a3517907832efa0c777e499666ba008816ec
MD5 560c9a802ab5dcf19ec66f8ecdd2bfc3
BLAKE2b-256 8b46fb945f7a624915aeab5813eb13c434f6efb94197d8623c5d74d740f7586c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 9c7623ee30973d55f90217c8bc37e96af1460a041edd8b8a6472f55e897b87d1
MD5 b19cd3ef258fbb0d25dfd61f7c11f440
BLAKE2b-256 faa2e3d302be064908bef0d3cbc684e1298097fbf10c081a2703599434518a37

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 ae3336080b92c0dfa9c134f215d6e4757e9e39f54df54f0bc497f0da0e84bd53
MD5 3fd3c711482c7b4e21839a7e1bce6794
BLAKE2b-256 708824aa87e4718f74270fea183c86aef7d4262fb98a0610d76fa641be096efa

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 dc7e17faa849099f497e445b7dcd6a89a3d3d2bd0bc3f99da2aba1c3220a5d2a
MD5 9efb62ce0bcbe84c7543d7a9a38cc657
BLAKE2b-256 89ac3ecc70d249af810cee7a622658eb9ea5bd3ca6389cb49bc6571b968ee84b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 16c83410923b0e7d7807562cd034a7e7e685376daeb39082f89bb03971cd3d51
MD5 79d6eeb45122562a83d3678793079595
BLAKE2b-256 c31a8531651ed2d3ebf44aa6ee71b45c57d27b06f12ad07601e84d0837b6f640

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ee847362b0a6bd5c7db80cc9dfdb7674a6ae1115f6f273ad67aa4dd357664b68
MD5 3b9cc83e25371a6a5ee117e0e55417b2
BLAKE2b-256 a63763e16f42b360d84d31ae7e1a4897beab7453353ab6bf879b49a48c60de45

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 5809bc7ca9f85cf51b14f9a0dd71001108801cf8ad276445f2fb5ecadc5cc9e6
MD5 2f96f021da7cf73f554f712c19cd9864
BLAKE2b-256 58c68d0c97f1e1747f7ea6f5e87543223c1d30a0e8a3517236a4582def859c0e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 92089f35edceef463acec08f2cdf98df4bb9355aa06bc26cd6b5b27ed7c3e3d4
MD5 1cd9d7579d8c1eab1d563979be743e7c
BLAKE2b-256 e6fccc4bb292f0e5818f68683915e881cd83b193612e3f136c2bc9ac65171a11

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 866e3cb93409880fd8cd7b35f8d7b1e4cd9f3d3f8f0e44b5220f955ee8408e33
MD5 74b7fa83a58dc22e7ac58b3044518a29
BLAKE2b-256 5bd7368b9458555c234b86d4627e4085c3fcd68a8abd0ba367e72f10f1373edd

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 12516f6d5565a28c1ce294f4d4ab35fb14bc6a886f47deaa28cb71c1f6345108
MD5 142898b6475f20a4557f833756455d4c
BLAKE2b-256 3afa7f68604ed6d6b606f9479f4f9c8ab433ba7eb47d0d26250568b6d05182c9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7e65da41acfd3d79b442a9e8a74a97c7f4a1deff9d114d8664e45abe85576708
MD5 262bb34a599db5b8863d60455eadeecd
BLAKE2b-256 7cddabb803fe66ede77ad1622ea3f83aec78d855ec9e63651d694ecafe570ab0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 224b579cac8c955c0d67044b9bcd4a7bc1d27d42c9ca1f526eca2c12ed4f20cd
MD5 292c4d7edb7935b041f73e71a8a80ed5
BLAKE2b-256 e33950ef6dba8a96be5c8a21de80822a5412eb73ba783c0cb117257b1545d553

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 cb5b32eb1da8b1978c0ae26aefe89252ec17cf9e8d58c76f4267ddb76d9ba085
MD5 de3fe5edd3ac758773db965edcf070a2
BLAKE2b-256 8daa7d535bc3bf924c50b44d608aa4a567e35c06d7e3dc96f5a5af00f49035f3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.14-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 ec2e96ac257e02c28fab316d47cf8e8af72db244729361f35ae1ff019340b832
MD5 ecd009ab4daccaec43159ace44f5dcaf
BLAKE2b-256 f10eafc30f7d8b1be4d743145d9f30031b38d3a1f4882be0a8325dcf30913f10

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page