Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.16-cp313-cp313-win_amd64.whl (299.6 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.16-cp313-cp313-win32.whl (278.3 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp313-cp313-macosx_11_0_arm64.whl (464.6 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp312-cp312-win_amd64.whl (299.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.16-cp312-cp312-win32.whl (278.3 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp312-cp312-macosx_11_0_arm64.whl (464.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp311-cp311-win_amd64.whl (300.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.16-cp311-cp311-win32.whl (279.5 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.6 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (517.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp311-cp311-macosx_11_0_arm64.whl (463.2 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp310-cp310-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.16-cp310-cp310-win32.whl (278.7 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (517.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp310-cp310-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp39-cp39-win_amd64.whl (293.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.16-cp39-cp39-win32.whl (279.0 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.8 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (517.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp39-cp39-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp38-cp38-win_amd64.whl (299.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.16-cp38-cp38-win32.whl (278.9 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (516.6 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.16-cp38-cp38-macosx_11_0_arm64.whl (461.6 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.16-cp37-cp37m-win_amd64.whl (299.4 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.16-cp37-cp37m-win32.whl (279.9 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.2 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (519.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 06bc76b8e8c214cebb99f6ba8ce640e7d56074395117da5a90f0c57cd6400cb5
MD5 7b223c5e9e9c7f78a9a1fd732cbf4291
BLAKE2b-256 2468f74509e1615a9fdabdf7f107b1fe73e8853f4044bc2cc99633ea56426d53

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 e1bc9a2864892e6eef8825141bedfcb6c596d94f2fbca9281dfad4167fbdf389
MD5 fca85ceed7766c287c8ccc5823e76271
BLAKE2b-256 9d2c406ac8ec5f81184fdd5afdcf9fea33641df7e14d7f296c11b2ccbdd41740

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 68b15699bb05ddd421775c414c413b727b584aec104fb3da32f9c88bdea6dbdb
MD5 774145157a8175b5954cd10495b114cf
BLAKE2b-256 5ced891c5b275aec67209aaa44d3be371a9e10e1f474301434ef8b9dd7d70046

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 aee46b46bbabd78646e24fddc28ffc30835fea2d7c8842193d9cb2c47bb0b6f5
MD5 13f21b9b90e3296ca1056694a4dfad95
BLAKE2b-256 8d83ec7e73ec97a3393bedc06ea3c82c082596ff26882f35dc915953a36d3fe5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9130fe1e2da31dbb7a9237f163a07e2dd96ceadf79af7ee5bbb938ec025a0b5c
MD5 c16b6425c0ae8ac831bda7a26c4e9951
BLAKE2b-256 cccf89b44fd5bd43edbff710c6bfc947cd73260f4443f7ae57af0809604cafe0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 46a8e541c91d07f897f8667b94cd6eae20fbe079c6fd2cd8a56d8c1b887b59cf
MD5 4262f19f0974b73aa85353e37ce60bb0
BLAKE2b-256 112e6d48a29691d1e000b029e54347f748954e335c48ae2c15f9799d9f69b0ec

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 9cbb99da9d711f987fb3753eb5b4e3e114e460b95d86191654055435d0da2933
MD5 55846cb82a5a8373ce8c7426f75985c0
BLAKE2b-256 56931f10e538971b9dcda77a567b0b2f6cdf58f091ef9f5baa5d05ff565e4a45

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 5afe2f39b26a043a28b639f5aaa2db74610e2bdce2871493bec84397ca4b6031
MD5 419624a1dd115e370d2dfe841fee8604
BLAKE2b-256 7a58a9f90e943c7f1e51b538d520d8493399ce0642098c27af39e9b9b25b277d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 9f0e2f759270aa77851695c272832400015f122490127b3de02eb22cb95ac6c0
MD5 8859b459436c2935b08771d61aa28c6b
BLAKE2b-256 617dfaa751bd3a48d36d41328cd102665e35db87d8e3c89b372b0dbfc352660c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6ad48ca9bd87e8262710059116b59bc93d875a3b4096c7a2301a3c0cdd6c43f3
MD5 2b2d06292d0c999cbbe01a7138c3ad04
BLAKE2b-256 da6f85c6bba7fd66d4bc01c0f2791ab2b8a8190ea6c17de1e29fbe77c96d57c3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a128dd065150188e1f8615147ac43baf89ffbbb10ce3d122e25e4ff851e9a496
MD5 730fc0a5c6714aeef90de1d47ff404a2
BLAKE2b-256 83556bbda6314fb73d159b4e3f4437c9fca2d66cd921b2af5b4ad5648ee620ed

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80ef7f1f35da5c3566660cc6853504c3cd2ad9a17ef9d5305e5f7621cf6401b8
MD5 2fbe9cfece7dbe8ad2cfd9565adb186d
BLAKE2b-256 d9a99ee997011cdbe99e70da9bf276448f43eae56e6a940b22bcd061564a50d5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c2f2820aceefa2d178fcdd2fc52b732d49cd2a767e386e3c5ac50701825dbe21
MD5 e5ff61a492088a03b26cfda2bcb7c534
BLAKE2b-256 7f4484edb4948bf02bed40c71612f60ee0f10ea25f13df0a43294a8316a776ab

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ec454d8060ba4d6891295566023c81d427f89fce36dd3dd806def6ebe488be48
MD5 c92702bc19a445f7e6ba28c15dfe3951
BLAKE2b-256 c2d87ea97087d04669b9a4fa5bceede0cffa42e5f6745da17881232bf6af6d17

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 32fce3b46148302aa69eb05c53db0e68edf36cd7db7b5a8d6b7711f1220b569a
MD5 f9f4608e27543c9be2f92e443876c9c3
BLAKE2b-256 143f1139fb0b9fec062434b54d896d1bbb9022e5f0dbdcb31ee0fdc41ee76b0d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 16b8672506b5fc29cdc43ae849dcd0a72738a68e7611b33c6c8893e9c86a6e2c
MD5 f5b097a0610b6b924a03623ed4f3e049
BLAKE2b-256 2b177bcb91db079384f2d0cdcba4e9dc1def2ed13ea284851b7c98bb6c9f44e2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6562c5c16c7e55ea5f54819903d0ba77543f82ccc27c50d12c07133ebf22fee0
MD5 5579bfd787702753115019ed16aa180a
BLAKE2b-256 d7952fccbbc03ea5c7f04c38473b4818612af23c08546bd3d7c6cb486e9a63a3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 8d373b2bb67c708d1422ca1145dc5b5b4487d1ecf5224171a1bc11006c579090
MD5 897fc3ec81598371c20dd606a34bcf5c
BLAKE2b-256 f755c9d25ac97c7f801e2825eeff538cf1d41810d8fdf8d99f80669114467d2e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 72b4205df1484221aa3e9bc92501059a38bad326ea47f4c0ae4516349fdde938
MD5 eb9dcc4de5bd3a98f775ff69e129a8fb
BLAKE2b-256 ed8548ef8282b1348ab29e66fee548ff1868effee35b8dea32b8d455ee82b4f7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 bbffe68a9d731db25df6740f2ede45a8edbad1f0d04cdd7537a82813509e104b
MD5 b9e0cb7af3f275c424b04b6902113427
BLAKE2b-256 db6835dc90f4bcdcc8050da22da7f886b57aafd9e577bd625270934c74f5e562

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 6821018785ead0b0176e081861f8f74ad6f18a8a146880b2498258fd462735ab
MD5 9532958233ef824284258b72cfa715a1
BLAKE2b-256 0f0d9783f7f7282d9cc2f92f803ca25bfe357c7df88b86f16c42f4979a4e8774

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 d578a735fe9336be288b4ba8bf24d459a503b9254bdcc9d9580f837787cff19d
MD5 aa4e66de4b087f935a00b63aea326bac
BLAKE2b-256 dec40bef29d5206e44166662ff3c39f7e086d5d60dc57d48a4fc053d95b4f3f9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 ab1fa21fa8a6d872bb3d65c5b7d9c6191ac7e058f6acb67251a3e9c4391eecbf
MD5 d08d832a8863129ec39300de684c147b
BLAKE2b-256 c9b688ed7c6cc2b5a0cedf40836f24290bb90b745a03644bcdadb354d9a4465b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 61db4864f631c8f6bfcaea32360b370a2f0609976b958a112e95fb6bdcd115ba
MD5 5d62211d13cef3d3555077e87ebb797d
BLAKE2b-256 2ebfdc552091168d3ea21a5c04efc7da38634cba4ed38aec4bbfc12388ebd1a9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a979deb3d923171ef785059bc3591ad98f8f5b67be41b09ff549490525264151
MD5 a1e5c5ad89e3a545383f814c3821b148
BLAKE2b-256 82f74032846ea8d3cca7223866291bf119b00527575f0729d4fd85bf075ac9da

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9c50dfcafa16456259af0eadbc0046ba2a9dd025d2369d8b187fe6b641bc9878
MD5 788c88c4ee9628e0dddc0486460bac20
BLAKE2b-256 de41bfcba00761a61790995685016e8c43fcc09577f90b61f7f1b870988f038c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b3e4e3fa42511e0a8c0e68e0e78355d7cebe87cb33ce59652bb99c1a54480ca
MD5 82d448320835cc68b8777f672e043049
BLAKE2b-256 36fe02d9a4a0cb397a66f3448b27c9968bc441ed180ec98212f99a74405bda09

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c35ca1318b0b7e37ae752e32287a6718c34dff001970b62baecd508d3bdb9119
MD5 03265606234e4fe783c2c3f63f79281d
BLAKE2b-256 30b945c70a71226e87a096a428deda723a5f9964a824c24b8714b0cd40a77da5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 1e90af4aa2fc5bfe6df4eb68a08f8d9928d2a65ef09290b81446110d396cab51
MD5 539bd92ebd9fb708d4d1607e3ffefd2d
BLAKE2b-256 a35f3118b63f32cdcf8994bbe2ff2240cebb2fe5f04d096deea6537d503344e2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 0b6e046632f1b120173579a70cd4aa9a53ba55ea04a53b41c5b12422c137eee7
MD5 237bf73deb54f22a8d84f11a354527e1
BLAKE2b-256 f1e7d3c054bcba10ccd1ecaaace902221c748444368ce222c2009fc11fb08077

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5566d40f01e4d3f09b9d422f0b29c6270176fd1d7db3b5bc3cd7f35fa9d74eb8
MD5 797b6234dfab196a48d3ade901919686
BLAKE2b-256 0ee837a630d8936b466d1ca1041f41c929703a7286b0802f91111385f08c4d6b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 14f3c111f0b20d8aeb7efe8b58470cf7789445b0986964dd96e530ca5f270750
MD5 d1fda390b4e8c1a4322d305961f431f4
BLAKE2b-256 cf57b1941ff8ab993fc0d3dd176c881e236c3cb6566e55d8440988446951831d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 1e15af88bf48a28fdeb311421491949c5c7e590595dd1cedd8cbe7c6cb4e6e6c
MD5 6336831d36f7a69d6a39800d0fc59355
BLAKE2b-256 6215fb5e547469fdaa33f8bfeaa94a023ac9c80572145b285550b3e0b7e38231

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 1b0f5e7db45db1760769c661383ba1abc74f3d0cf93dbc0af50b3904188f6b98
MD5 6c99cf9f01d8b953b11a849b17a72973
BLAKE2b-256 c9e11e6d97264b775c638d5859b45e89326d42405d7f0f4da891f81bdf463487

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 020b6538af060eebc171eeb4e18bf5b51cf84d2c50c2c0159b75b9fdf74995f5
MD5 3a5f02e77478e68c2bd33dec9a7e5125
BLAKE2b-256 29e0836a61aa3ae99a1990c36d638bb26bba4516193689d69ecc69d1fdcf2cf1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 37d10049751cbcd7cc321d3e2e6754c3e19e0b5109ddeca467ff1e4d1708cbd4
MD5 e193a16470ac0a6b7296bccec2812c8c
BLAKE2b-256 f632c31a561012b2a798bf7d1755749844004cf52852b3caa430149fdac97b34

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 7a3e7f771a66bae5e238066614286d372b9709edadb0d30768fb98e305c35652
MD5 a3d30fec873e755c3d3be6233e3f4173
BLAKE2b-256 ba75a8b8ac9ecb241fa164e7827113563696562fb182ee2677a23fedbf6473a3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 915ffd92e7424a749f6eff8dfa9390c8650bb3df3a39ac618f2b9d94c77e9f8f
MD5 9de741d9f77377cb0584b09ad006657a
BLAKE2b-256 e7ca80f04871a7697fe9dc38492b479992377d310f8dc8bcd17fc8369a6febd8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 bd587fdc950fd9feebfc860215999c577f2258c0de21157917206bf4cfd60dc0
MD5 9fce095d7619c527283384b9e22eaf86
BLAKE2b-256 7770e74415dca625104224031acf7f6714f3566321ea9cee252c45702597ae9e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 950d8191ba7ef20c53c09a210656a4d9979ac0c7117007aa63914b85f6a37d81
MD5 d9a9a26ea5aa19072dd839414178dce6
BLAKE2b-256 22c9ed1e294bc2be64300683f33073d2c37bef1e043e07a353ebf7ce59f47beb

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8e0bb9812048a97f8d68aab57aa066f4c9b3b377b716d18065462622ed9af063
MD5 248b84c0b8ae0f49df93e7212c8933d6
BLAKE2b-256 5bdfdecb6452ce3ba36eab4648814e7e4d49fc8f95d1318a737a67c33563d1c6

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a88d0aa746de75d6f33544f1e9b9c40dd50a3d2493840c1106815bc9ffb6c5b1
MD5 299575a7d7c4a8f2652a47ea6f438233
BLAKE2b-256 168e8ac67f8248ad1880e95de434c7bebd9f96748060ebef53904b945b44a7a7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 29847393b8a12d6d724936bb26aff8101ad04412c79d7e35dce65e5f17410ab2
MD5 dbba01199f0dbb2cc23e575015c4061c
BLAKE2b-256 2f868761d6b56f29bd62bf2481f93da344e2f9c7a36f431348f4a8605588deb4

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 57c1a76881e4e027d9ff744f1abe2f0009cbf5a0cd096893b9e99c2e5ccf0d02
MD5 ec611713c8d0eddb492bbfa0ab0c04c8
BLAKE2b-256 037619ffaa0a42a62a5a3582857910cb128ddbff0ab24b44ddc0058c3094c288

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 bb549309c6881ffe43a22767708b06b59f754d8d3964863bf710e9ec215efda7
MD5 c7c21c9b3b70fc013b1d441221c23299
BLAKE2b-256 447f6d670c28298d82e3c141cf3668d1acd966de7b42eff10eb04304a0826502

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f950dcc074f955af67355903dc24ce46595c790f75a8cf5cdbd71ead2c301483
MD5 6264259e79a4aebc3c172ffb1c47da8c
BLAKE2b-256 a4fce7643bcaf202b4ca8204ffbd7d26360d82149c81f926754493a53ffb6746

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4bf1d5a171b4413d235f31a2062ad23737d78c140c36a75f20dff5337be6575c
MD5 6a4cb4fdb2ffd095382dcd4302ea4c32
BLAKE2b-256 48e43cc78b98caa9126c3d33b9a8ee25622e6dd5279e830820d081c07116ce49

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.16-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 a14140aea086ae35137e11a24f8053dd36a0a271cdc36adba7897c6156d5c4bd
MD5 4f34c292fbd861737b7d2d3bb5ff9468
BLAKE2b-256 397d8ebb3ae01331ee844676d2e1df888e58ac430a6d06ad8b7377c871de2313

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page