Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (607.3 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (606.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (606.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (582.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (605.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (555.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (579.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 6a329a7f5db41128fd8a14e4c0f200fc8b8be1dcfccf33d8b16740d488c16a23
MD5 04b8f764d5589c4da0a4e1bb4cb6eeb4
BLAKE2b-256 a55b82616a51bebbaadb6f2668306f26716e3857c704641b07f4a12e2d6b046f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5db49420ea42aa0d4003ac073ad75fdd4fbf7fac1aacb3c7afc2ebfa7b555941
MD5 be4c8ab3c343b02c6b81551c6b5ef08a
BLAKE2b-256 77beb7c29a9a0e8310efa1e473d1da6e2f7733fc1242f6180ac57296f51eeba1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 606d8b4cb57113657cfd65738866ba4f6ac43290c8883eea51d647234c4701d9
MD5 bb08b8b5b4de15cb623417c0af336760
BLAKE2b-256 b6368a9e88c5a50388813e761fb3341610b7bc8e343b30057483410099e8d55c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d2053d3bf393d0b340b2a4dba026bbc2bcdd86338a4f2ec0ee95150aa996fab9
MD5 62ef9cb209c3c50991dfdb64d351eead
BLAKE2b-256 51a8b5ba15df1a02387f1c834d0655c61f8072c12b2d09e87d1c4be48ab53a18

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 1095f82afd4b8b70c919df0c1ff20db1c66f560b0ac8f4f971d7f8d21fb38dc9
MD5 83b568c9939ea213750e2e8108303ef4
BLAKE2b-256 f0f8c18b438f199d85e3ef9df6b97f25434a7442175f35fcba51c1f46f2e9399

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 771e23f463e6032338404a78050ee219b08f9461c8a41e3e7a3c6b136404467d
MD5 35ff1d42bc8f3a491fdcd6515ba94bb9
BLAKE2b-256 1630bef27f4185bce938591dcea32c6114060263060e61732017b3b86e40d214

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 de3d8c47a4b3abc2e67da45a38c820c049e47baeb199ebf28e9088958de708d9
MD5 65405023855350c85f81a3a77aa401b5
BLAKE2b-256 e075433dbead949280c4c4a42ab21fb6bdc3343c25ff5e673897355589b68bfb

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 377b7e33f8b2c50d1c00c6721268b500385f4634c18cce94a004684d391e8e21
MD5 d1956aa74b44fe715663531da6719a7d
BLAKE2b-256 f5fb9dec4f7cf6f53a0f680f6299c6819594f8e1910217d83d34f4e8b4723623

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a0e4674ab58ad9426caf720bd852921c27e26c30b0423b68bf375f5165182b95
MD5 517e6960ebf8b2734d51fdea1abe86a0
BLAKE2b-256 734b8ce9dda956223f40c66a0bc047259b120aa2fa5ac282d29e5e29be1976e5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a408f111a5b4ff657755cf2e3bf377364b1db738811d8603b37c0e6fe7dbf903
MD5 6e411f916fed9fc32a05624d4aedfa69
BLAKE2b-256 242bc94ec8132e26e82fac30bd3715d6c7d6704dc0ea8820f1eb0f225bb64090

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 80fb48aaea4c6998587455531c0cbf1aa7050a82270a6287a9aa11ebf8d7070d
MD5 9639e33029f53c52eb9b57a4267c115d
BLAKE2b-256 2bf82111038030e2c3f16c089953ee56c306d8a26d654057402e633daf7b7f46

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 81043b180b21f3736ccf3d31d3f8b23b6e20dc71147f3aac485a4d3e659b1b86
MD5 a1d4e943dfb8ddee08b11641fbbfac03
BLAKE2b-256 0b51dd477d61b2a714ffd78a572ddbdeedbfc791218ddb6152108bc1b9e603d3

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 615f0a4a454c0fb43d6caeb0b89158dbfaaf1a6dfd5da09809db6b36b007e2f5
MD5 b0b9a6c4baf9caaa6f3d3e2a4ead2488
BLAKE2b-256 05a9c6e068037f7db052703b821dd31d2efb3f8ba9042509bc68bab04db7273a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 4fd05e639b7593b9b5ec6f85e031b3ef6e7149393526557bf5444711bb41926e
MD5 29a979e48b7d67f70aa309152350d8bb
BLAKE2b-256 ec226f1a75769a0c07882defd17c9aa2b1f2c1d17a03124c025d788f304fe255

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 45be0b11b96e67e1238ae98fd303e275c2c60f03a2334f14a8278cbb6f893e5e
MD5 e352f7ccbe01737f3cf653802d9045db
BLAKE2b-256 1f886f22e718da10121f6e3e74f05145d393799cd7cee54ca339a8c767f5f286

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 20ff8ac4f7ed57645d7aed1ad3c9e6834d643a660d6777b5e52873d57115c562
MD5 77266009d92f6d0323ef15b77bf72c33
BLAKE2b-256 64aa9cf10f3e4b33b570af5ad1edef53fe80035201feee640711c1377f0649ad

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 642e2618335c83ff4b15cc24ae4235f8b960440b11a6b9cc2095907af2295eb9
MD5 0d339d830466f7b8f3ec26cc95623744
BLAKE2b-256 4b93e705d22eb9ba051449debaf0bca57e368010d36669cf0b002eb11a20d356

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 937ae1d46eb7da700bb808ad95b4f4c722767ffd88eeb61e5befaf227c4598f3
MD5 7ca4a82caa6a447c6df133853297a880
BLAKE2b-256 18c26da1cff2e8deafe0ca1a0c6c01c8a83ba74aba5b68b07536c2ebe43a5e8f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 ab22da08b374f3d4349d05187269a29e330addc6e260e2205dcecca1e1d32c5f
MD5 f637272750c64167de8503f27d713dc0
BLAKE2b-256 bbfdc671ecdddf296b4dcf2e154b7be8a87074bf7239d91712ccb2f74bf349a5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 78596f5cfe10111e5931912814ddfc655f29dac491931d439dedfb6bc4fb6bab
MD5 a679a3240520ec281769e329b79330c2
BLAKE2b-256 5882f4b85181aac3be6d272771333193b44db421475bdb37c23ff1f8ca5c18c9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 391eaa5a9f60c776da179532af54f0fa68b4be94a05e8716613e632f79c49f13
MD5 0930cdcb736082e9c7f21bb21a206613
BLAKE2b-256 5b8703ee3801fe74783b8a059f1d6ba2aa5eb11374d6205b71d775a1665baf35

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5a3495acde082a9b79bc558a35705e21f14f101e4c85c8aa5e6ffef369c2295c
MD5 7fee862229d08e998bb7c93f4e02595a
BLAKE2b-256 ba812d119de1599a6e1d0767062ecd027d11816d083e97474e04cbd7ff0a669d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a5744da66573154517e33235c83378d559dea66a665cd4a01a53f8036bd5eb4a
MD5 04e2dbcec9f0d7a4d68338d3ad26dcc8
BLAKE2b-256 d9628bb7346d92089196b2d19c64dc57f8ddfe7505772bc12730635363628d37

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 350e6f6dc3b84913827497161bc87b06bafc1212b08e78958de3aeb436986c66
MD5 2fa8cb098499b0d9602147704131f847
BLAKE2b-256 ac820e20c03e2beab58119a55f7628b68b15fda751f323c637e246e0aa19a978

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 823bd6206dfe2f179ff81dd2d177c9f58adb0203a5cbd60e8c6b4f35b5d1f89f
MD5 6727ad2f96e919aadc81c78df405bc6e
BLAKE2b-256 21482781b1b1907d23bd0eb39cdf8f6ddb15d9fcb4798adee2bd70183485ee58

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 6856e1529b5090fd3e9e9cec3a2a1a6175043ae38478af3b9c73796670af0b9b
MD5 560eef6f5de43ad42e1970726c2a3874
BLAKE2b-256 08c314658c85904b3adca69091d42cc199eb1317c5e635b07d50d6fd0cb233be

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 a9b5985419394c1f1c2cc04d50aa68ff76338bdc4252169946c2dcce5b7bac96
MD5 be063895d8bb3154457f55f0ad851dc2
BLAKE2b-256 37c67e7af56c8dea170eb2c18b55826179d3f36bb67a098dbc42ed66f08b03f4

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 30bffae7c465a41192a46f237e45d65829a5925b347bda7326ad02c2c61eedfe
MD5 a9b9547675bd63930b3c83d47e132e62
BLAKE2b-256 7d2d0bf150e1d4e19b304966c24ba3a20dfa5976b70b38bfca0f17e669742354

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page