Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.22-cp313-cp313-win_amd64.whl (299.6 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.22-cp313-cp313-win32.whl (278.2 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.5 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp313-cp313-macosx_11_0_arm64.whl (464.5 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp312-cp312-win_amd64.whl (299.5 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.22-cp312-cp312-win32.whl (278.2 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (518.2 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp312-cp312-macosx_11_0_arm64.whl (464.5 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp311-cp311-win_amd64.whl (300.3 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.22-cp311-cp311-win32.whl (279.5 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (517.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp311-cp311-macosx_11_0_arm64.whl (463.1 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp310-cp310-win_amd64.whl (299.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.22-cp310-cp310-win32.whl (278.7 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.7 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (517.0 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp310-cp310-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp39-cp39-win_amd64.whl (293.3 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.22-cp39-cp39-win32.whl (278.9 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (517.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp39-cp39-macosx_11_0_arm64.whl (461.7 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp38-cp38-win_amd64.whl (299.4 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.22-cp38-cp38-win32.whl (278.8 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (493.2 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (516.5 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.22-cp38-cp38-macosx_11_0_arm64.whl (461.5 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.22-cp37-cp37m-win_amd64.whl (299.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.22-cp37-cp37m-win32.whl (279.9 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (494.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (519.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 671f6f06fcfdc7d3ba9715a26e2b15fb29fd0e0f613bd2eb280a60f9d437d996
MD5 9d1d6eaac3cfa8d855274458ba716fbf
BLAKE2b-256 5ab4d4a4592c11493768c293313ceb933041dfda204c125281e4499cb1b6d4c2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 7fdd55900652c7b1cd8a7b2724b9efa7355f2e71c5a56077af9ff4f7f981f8f0
MD5 c2da9d24122aaac4704dcff7296b8df6
BLAKE2b-256 0918d1e30fe6180dcc3c06baaae4ec68527607b57186d4f3f769032757785c29

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 00f4f45765d19ea44b3608b9a631043c54477efafe972b6b90be96b3d1674e94
MD5 dd69778869368116abea58e244f512d4
BLAKE2b-256 0260d9cba0b917f1d836900db6bb6365cab93ac88e7a1047a79110a58f4667bc

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 410f814b6c8fc79532107be2430d7e37305fbebbb242e65f2cb32a1986fcd963
MD5 5a512331936bc51d057531445d05e8b7
BLAKE2b-256 5dbb86044a8ef9fbb0d18110344bea9921be4cf3d2bea2c370eb241f89a8766b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 77e7f94b19d851ce41e70fab3119adf0dc96dd828fc2568eec6d49118e5f072f
MD5 b4496abf129b0c0249995760e27637ca
BLAKE2b-256 e5926cca7aa2404a17df1796f826d87027d500f63532936f9ee0783b57b6ba7b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 388a7bf5f1cb857e3650a4d129f869bdb20930677cbb188fc4899678aa5aa1cd
MD5 98f91fb50c20cb78c2ab98475c6b3c3e
BLAKE2b-256 a67130991e69c86d057b29d8949e267a2b5e57e563fc550403f787e6ea6750d0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 c88552cec1f1110e7c468d42ca43bb3d05b0b2748392665bbfff8d122582831b
MD5 2674997439870bef0f81a659f898e05d
BLAKE2b-256 9454156d5bb443c5ebe859037c0483ed38d8597cc18521b5507c740a91261133

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6ddf5ace05301b7eb64752ca5a9dc87c5791027a34e1d1b03181e009d4952d16
MD5 bc971816b0078e32b7c7fd36cc60c05b
BLAKE2b-256 b0f45f0c9636420edd17f857dd14aeb9fe5130706170f71288d0029e181f8d76

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 fd8e92306dd431037daf7b4fbaf9a60cddb7790574371c8a199b65dc3fe883f5
MD5 c261c59fbdb6bfc2d4f4a419e027f53a
BLAKE2b-256 c695fa4e2be27b74051c6ee12f4d06a0148357b630dfbce1c86fdf94ea131c3a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2a8141a13233ddf60dee6e0f98ce94f6762fdd3223a5deedf8b194873cd12220
MD5 61d268f7e495a28ba110f02a8ab6394f
BLAKE2b-256 fb9c6592b4eb7c83678ec0418dff6d526b3db8fb4aa00d728250f5bdbb161f74

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0f8c046cdee0fac64fc7267507f497387c95aed7e28f54289f710439a3d945af
MD5 d71b810b6642f4cea49540884d3c5462
BLAKE2b-256 d03b88544a3c62485a016ab83c2f2a610a407a10e88e4e0327b5a3a221d83417

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 44ae3c18c181a4a7bef97de9df44c0f07f079e6fffd1acd1f956f283592fee6f
MD5 f7d6b8d46166b1abeaa0d16f689fa461
BLAKE2b-256 a9e64061f71736bcf8ea451c147b266bd6566945786aba048c30cba3ea69cbf0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 2bd2e586e669518042ff0f05d08f74b19c15fe3a7e09ee00c58cab2191dfa4aa
MD5 8676a98e788253ce6050dfe56e6d946e
BLAKE2b-256 b87e2c6110273bb4d86071a28f0e5022f34bb0998f9fa4f2a0434ab8c07b78c0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ff01f413370dc2ab457877a70938b06746d42f17e9d4aab16886b66ed0a659f3
MD5 2dc3d9209c5609b7e6fc72ba1c097c44
BLAKE2b-256 781b6d4fd9aa9564436b5f31f947f0a700e40f1e86a110c869ba26b6860fb890

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 319f1bf489b56fcf3522403e79448745eb84ea94e6f448b963b1154798ba5ded
MD5 02943adaba1f1f72655554e4983502aa
BLAKE2b-256 9b8f2b012106f76bdc02bdf5d9a84e4d32a5192840797cdd99918b862f28b960

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 9c94d43f1b0eaa9eeab7d27be1b136c2b0e8be907e44b506649a2221bcd36f9d
MD5 dcc7df71f745e9e7a6f03e9fc00507dd
BLAKE2b-256 4250c65e8ee0d3c4db04a6d677a3118c37414ba15ccd2a397ebba1cea86c0cd2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 3dbe263333ba2fbe7909accc4a55f4bd69d86b56d323d7c8f5aaedaebe084057
MD5 8caa338c0ff7b65e9ea1612a258350ae
BLAKE2b-256 7e27c36994e847aa83c820abdab9119db187761e8afb2c3961130be5f716b543

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 f4b234a180f0981d678a31e6310b865ea8664734480c23cccfd8ec1d37bf0448
MD5 96c54e044a4f7fd97b6b36bc2203c253
BLAKE2b-256 a47428d147397ea7952950bae5a92f6072d10b59bbea5efa1b6d10b821fa199f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9a73a6db67ff9c55026341836a59f932a238cf07987c15401f3c3e07c247c1a8
MD5 8fa388bcf90ba332ea2d88e556772c5b
BLAKE2b-256 16d36c1697c2640a30a990b3933eb615d7220338a4c4060b43f305e1a550e22e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 51c8d84012a2afab11bdb4e3ea921620235054f5efa3137adb4d1b8b64323dfd
MD5 de410e11e70fcf3155c5e1e520bd4bbd
BLAKE2b-256 b96c1f89aa4240d167807b1775e33ac1f8fb5e0fd74766c9c06724134b5bc36a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 02c785d2418cdd507e1ec1391b251ca336630637e91ae54359d0be30b4fc1573
MD5 9bc59063d0823bbf1d1804a11178991e
BLAKE2b-256 e91e7d556944bb4f0f5e32311c5062433583f979b2052b7de8bd52553b64478b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 79394e1f90e751cf3fe6606fe50365247f6daaa7719897197a44875db6e2a2d6
MD5 9038089e44cb23a2ff446afde28a923e
BLAKE2b-256 89f671579dd58edda9edbde7aa6fe9478e8c4d5feb6c373429711710380ec220

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 3045a56acceb4d8fe825d679c8437b5f2ce76d9973105ff0b2ff735a80112fbb
MD5 75b10b267b50868b1d1bad64d9ece23e
BLAKE2b-256 6895a442ac2b3e4b6dee9d83cc776699a2c509905ccde3ceb6aa380c4f9adf47

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 2b1dd090a2e1fb976493c94608bbf2326e13d470a3d9ba6707a160dfa987aa4e
MD5 cf3b55991eb993b97578c77b14991c0f
BLAKE2b-256 45f0ace433d02e5eeca8761a8c03e24209e9a6a00b5cc1df390dfc25f841974b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e3781c6c1992373f0cdd64b65cb0d3d9ca7ba8323004cb2fc5ec1f6b45bfa453
MD5 19cd46a94cadadbaae7e1dca0c30067a
BLAKE2b-256 ca3aea9440a43a0e0584b72318c9519652a311476b16c98be7b1cea58312d408

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 7b3b200b2dbb520ddec5baa4fe672b9e81129897e5256c837bd69a9ce29a3466
MD5 194ab75a5766bec726a1bb6baa770b95
BLAKE2b-256 afec5d13e52cbb6e742f43125bc049ad700f33d6c2127d9c029da2bd90c6e875

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 d7750eecd9e5029d9b7e16cf893124a2993d6c740a8c866c19024a4b8baf0918
MD5 86311e32e45cedde99af3d96ec1ea15b
BLAKE2b-256 471f9a69a698800b76b06a056342d7983ba499ee0b619058610b47719445e902

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a01ce935612506a43c6bd36b0214f652e6916f8227e3cdf4ccccedf8db0bce55
MD5 48504b20bdb39db3352c3c4001d599d1
BLAKE2b-256 2a429a4818104e96e071b2c2821bd7fa829ad0a8bcb97a2071340e8255101ac5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 6cdbb340dabf5fce6cd1f72f38070746ec7edd3d52affe48cbd45e7ea6ec3b17
MD5 174a2162c53ab26936a04a637112d630
BLAKE2b-256 e04c7f88796a876d6b90693efeae723eef760d1c5bb654e04416f4d05659d248

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 02df69d8be6d35162727fb066124407eed818d52d640ab70bc8216413afb6f32
MD5 97372ef27c64ff265f204b613201bbed
BLAKE2b-256 caa09181b8a133d1096d3606893454629a2cddf2f43bd775b96748052a9b997e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 447565a8f147ec2183da07b82104f2edc557c227becaf42c9d5a0898be016c1a
MD5 f2a62f005d72f2fc2bfec10c5b60eb98
BLAKE2b-256 4d5a2ea2a2c015d1a95567212cff60c4fb846c52acfb4f766c630298b2cc6384

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 e22b1814688f62e64649983b8a28aba3fb068c5a27c466b260d4a5688677651f
MD5 90accd2e7318715ffb30bbf0614e8e3e
BLAKE2b-256 94de748493edb16cbf49769f996cd63fe279724749f74f9236ba45470cb616ce

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 b65edca81bd88ebe2e70d0800aef5017887b694367fc7e925909c84e54f4787a
MD5 f869059ba5350f32b7b217df7c55ce98
BLAKE2b-256 d2ed4471431f37dcf6699cc676b1de567469a00b0ce0cfdbdbabcb8aee604380

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 17a52c9134dcda66e104342069ce86612cc730f455b0f6fac98f68fdcb678700
MD5 2f6b0c305afe2a8f091145b8a3b94074
BLAKE2b-256 c16e0cf16aca6ea62bcba2e5a1085324bf3cc31c05aebffd17be5c49a5d2d7b9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 67150fd92ea2b518ee6910c48785bd5d8e20e07c112836e81f1151a6196b8ea9
MD5 5048d54883e33be1858e4d86c1f55072
BLAKE2b-256 7d188ea6d0e5d105d48c3769061ffe5ed5e9dd1ed3979bccd14d6eabdb373d49

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 cea5b3962a3531179aec2d5306e11c05691483764bbd3d74fe11369831d0083b
MD5 565680653befd489b26e68e11e3236db
BLAKE2b-256 7ece501d81e5626728a4ae6372c848600a2baf3b16c5284b33765dea0d8e1451

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bb926a9851eab611d9042717e6b07cee2eaae7de5c3236c12677b4c197913c47
MD5 afede9aa78267ebdc7ad0939ce33a81b
BLAKE2b-256 17e2e43cf15eb0e4c04033a2c1fed36a84b0dbcb6fa2a7cfe356a709ca063280

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c7967a5963aeb45489423e392813b99fe5bc39e1e848e7b5fb1767bed0531faa
MD5 9738908509dd7aa1060c0d84a1a9ca90
BLAKE2b-256 56c7fb6b22d91a99dab6a2d8f90c14dc69a9e0da91d435cc6478825cce09cb6d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ccd28d8ebda9f5dae785a5cf114e1330cfe1d95edd4427d7bafdf9fe4f0c2477
MD5 4dc4ef9458db8e55a98d9402237dff79
BLAKE2b-256 1523e11fb8ecb481c7c5c36c650183dd3c598ba909d8f9939f315281685084f5

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4ba952e835039df4457a940865086a57433cd391ac61988b6dff65fbdd5230f1
MD5 faab306496ee5a7e3b40a8fb2061d297
BLAKE2b-256 8c4b4b3b884fe66f490c6d8b9613de7e4809db1d6e8c508693717b65e471f690

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 f07c4aaf8df1c6adf3e58bae4f4e6cee0b9da09dbd9c263f157839b7a582bfb4
MD5 c43d6669471535fa20d6b75718b455c7
BLAKE2b-256 b84eb151c822f0e209d675f91c2ecb4565fe64d82b37f50071b8b43bfd0ff48a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a4173fbad2c19e1ce766bdfb09491def7968117b90c68490178fe89ea7b0d529
MD5 d9d65fe5854452ff5434bd9c06372193
BLAKE2b-256 815eed216da298eeeed5be0e7af3cf7e71de92fc66a4c97a55c9a0d655e9a83a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 337ce48b38a5cfe91cfad5b6a1ed67283e4dc02dacac4b24cf79023509944b99
MD5 bda4cf2b3f4da8e3d5bb2439c4c8224d
BLAKE2b-256 d1b424d40d40118400ef98f37e2a527922e246b6a311155561560c12ce2a96a1

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 082ee93132e5a452f1c79c6ab3ffc296cda751594d01a6b1758cab74624a6bba
MD5 07a3a76df3dea9afd9a49a23f2a461b1
BLAKE2b-256 87ec5a4de97de26713fa0d7ec4d3763e33a78d27b9cba3fa4e11cf266ad63e0c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 636d31fc47a2ca8dbb006c8d0efa3854f50aa2816b7b55eefb1ad0eb942f6535
MD5 84c4db9058e077cb4b0c92bc6e154b9f
BLAKE2b-256 2f0bd12e68437b0537644ff33f59713556b6fd096b0467e1e15cca6fe7fe5765

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 addb393c630d4c8e153bd1b52c0d331b8bf1819ef9c5b521ce9a78188f875203
MD5 a316e11057cc3322b70b83719def368b
BLAKE2b-256 87bafdc2551b52b210f5deaa21830eb221fe770ad8a007264d69d7f2d19086b7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 e453f0e162345198e711b825a2761c41a1b90bd3edd23597f31d5bf60ba3df13
MD5 3e78545280f5d76d7f4d60774218556d
BLAKE2b-256 69fb98abfd4a613e67b5c688cda4456b67496db611e1b1a2fbb5ba3720588b6b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.22-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 281a47ca76fd5becc838ab757d12c612c130232650a5cc335f293eb6b8af1485
MD5 bb8548988cd313318c007b504301bd5b
BLAKE2b-256 e4dfdeede7981fcd78ec3860123ae767d4543be770cf6c0c24d02f183a7283d0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page