Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.3-cp313-cp313-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.3-cp313-cp313-win32.whl (367.7 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.3-cp313-cp313-macosx_11_0_arm64.whl (554.4 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.3-cp312-cp312-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.3-cp312-cp312-win32.whl (367.7 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.0 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.3-cp312-cp312-macosx_11_0_arm64.whl (554.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (607.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (606.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.2 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (606.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (582.7 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (605.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (554.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (579.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.3-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 48a0cf1fe95d430aeb25f1010aad759e917f1963a0261f1fe324a31b552809e7
MD5 3c8a3d6d5797bc01ec5923a87961fe01
BLAKE2b-256 3565b1d0c03a17354c3be62e72002730773225b839c48669d4826a209a56dded

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 2740a44fa57f42c1df37e946947d34061dafc97515609288149d0f820dfb245c
MD5 f0f080dd25e357ca5c4f5b4bf29c8ad3
BLAKE2b-256 7b21c24102792262b89fea34264e895867f1f00b5c5cd4ab8f7798394fddc6fb

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 868e289555b22dc8c28aa90dd6efe9c1d7c649aa76a0f7aedfca6ecd44c00a4f
MD5 90b41fabe05ca53ffd326e7ce90d3511
BLAKE2b-256 e20a9b46d98e53057ffdef4797d0ec08b08858e4c7eb05f01a047a0ea6599252

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 535cc32a8eff228285f9594d776041c3b3dedbe0af606894e9a086bfb7f65e8c
MD5 6fbe1537a0f90aa5b14855ee11757007
BLAKE2b-256 92fb651660f71e9b3850b37a8b75289f24cca347c9bfd0d35d99c022c156e4e8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 c5d2a79f3e496c3b1c3aec895fe68031ebc741bc9aec9ae6fc2f1d2ecc7e5c10
MD5 e2fdf3732fe697dccb9fc0aaac68955e
BLAKE2b-256 1603d9cf9be1dc45667fd71268320e51a01bf1285319062310dbe034d8f36435

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 be03ab2a0c8014d15c56ab67c388c50f64061adf5f030bd1819c8f44c649a456
MD5 2e5cda3dd22596084bc2d85aefd3fb72
BLAKE2b-256 0e7234ac680746c26415ab5af1348f9e62c583f9a7a0fd2f7c5d2eef6f793bb4

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 349a4143fdba1ae360e351859a094eb0ded73be06a34a65a47490ece974eb39c
MD5 98986dc68cd5565685a4ab0527b0973e
BLAKE2b-256 3d4aaf80438b573f31cdee78cd6f507d9d61f5f2fe99577b602d2e53d1078d9e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 55bdff2afe8d224b305bc1aff1e60b788ac6f07c5e87216dbbac1b7f20d2fb78
MD5 108ac4e240cbe4c96b81b2691e9361ae
BLAKE2b-256 5c430853566572fe42577f964997104bbd52508691f38bd694ac045b4357f314

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 49c024466b1fd83765a118c4926d226604b500c7da24f0e045ab01e2d3087b4f
MD5 85f916a971a1a620f51de65f8371f430
BLAKE2b-256 c21df01e880cb0d98cffa411bac183234245d4f639ddafdd206974c224c4f76b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 495f055acc75cc6be7bdc8979bc7c1565149cb26153ff2c7797f347d7ecd6171
MD5 18684e1c58de04104392492070d7aa8b
BLAKE2b-256 00b1f3d9c6b2a5f940eb821a9c9ab79c4627756724d3e9240679d77019d098c8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a1ddfb21aaddceccae3f8baf7f1b7b5d987aee84772b76f8880ed5517ef19f28
MD5 2b4e57119515cbf7afc55ecb717e8b29
BLAKE2b-256 da12f90b3efc8fe6e05eb9b238febed2ecc9b7370636eda648bd34a540843dba

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7cbdcb26fac7a167f393cea4a0eb1bf7988037aad34d81dd335720261fbf2595
MD5 f75e223be21842a8acb43f9efc848356
BLAKE2b-256 2b22694a97ae1c051f885a18097df6774860c6cb7b5c6e89b1ef936be1f9c85f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 bd5d27c6cca1c3861d600eb3c2275a5655c7885596fc05b864925497bbdd5555
MD5 6bbc9e4b6e8b44e3e580fd2f6a656ca7
BLAKE2b-256 0c906047017797b5c1d6d4c9cc5bf5ded211872ff47184c41836ee18002bfa75

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9dc3fe66a88ee887ebda67dca8cc9684e9cfda4604ce351132cc64263489151f
MD5 a579990d004a6c844c924ff81d293e52
BLAKE2b-256 0eda4b9be1bbf427598503146b68942a87e8660e229158cb796eff6454c6bbca

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7d6a3453590a16595159ead24604f7ee86dc3564fc308cae0ecc068319cdfc69
MD5 d96505a20ebb24463a60e0ddba830743
BLAKE2b-256 599446344e83d922eb37bf2cfce728f40874c48a32d199d0b62a28ec743d5c0e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ac9c3d60b1a408c913940d534f78d7506aef3161a6bf21082f4537018cab194d
MD5 f536a6287453e3c43811f1658449fa9f
BLAKE2b-256 9159125ada76fcae8392b84e6cb1958ef4eaeb15931faec95f54dfb932899ea9

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 28abbe97824a852f9fa5ac380c4e38f74c25d768c7fe5ed96f4010193cc0bff6
MD5 aeed5a0fd266b7442abfba20c83b55d5
BLAKE2b-256 eaca77f85d572948fb5e4f6d621ec29bf17c926ff8bb1759ef3e6e94dc816bc7

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 c42476eb21f3320baca024e73d5eff34fda0928184b412e64dbb72309ff4c444
MD5 abed19eae2a8b2eea4261e3c292ae091
BLAKE2b-256 89f80b276e880f536165f7bd6a09d738030124076e18d3906207c7ee0a007f6c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 7b4d9432f2522c66fcb44ad5fdc563f57a73625c33acd58db7218ca4e07a7806
MD5 f2e1a1ef970859b5302a68d003fcde43
BLAKE2b-256 24b1b5840d127e47ce80ed1d8bfcb8cce9dba964cc255bf47a58a48b9e5a1f29

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 a8f9f6a2448fd4a5c3051ef93f033d98eee6172d1025dadfdc9cebb1d79fe0c2
MD5 a274daee36db9733a8c00f301d2a0c8c
BLAKE2b-256 8144dd707ea842c828a15972cec5e2291ba160b6c95a55924826fad26feba7af

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 fae698f921e56aad204732ba86dcb08175d0c40a4be0c505424fc45996763e4d
MD5 d680f978d2aad7b1c4849ae718f92d2d
BLAKE2b-256 587bb41e55fdb7d7904c8a99142dd9d70388f44811a3543c8fde7f7bbd0c9d7e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 4b504a6f7396baed4cbdc98f7890cc7e90afed0b2a2d3ad79b73994796c63aec
MD5 6c3090e8470bea81c8915043fd6bb931
BLAKE2b-256 533ca430245733805bbf3ea9148a929bb85b7ab22e68970f7400b3b076f168b6

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c1c5bf47a74d2adc5d4b05b150d23aaa2bab246c69d4bbf242a680cce9681429
MD5 87c342a7fb516ffbbe6d5af84b6464b0
BLAKE2b-256 c9f9deb3dcf1b3da6cee1c618114a23a2f525c860afdf8316d3ff90a14bca824

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ee858eff3bea99344070195041d264f4994f62e94a023188e25684b674b7eddd
MD5 fc1b1321eb78976bc0f0d49ed9bcc8c3
BLAKE2b-256 20cb3ce88f8334c738049900256b32783963906bdb8117e7b636e1ff76f38a2a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 eac55656ac6aab7841be7f98b2cee6b8d14a26ed994fe31e8f0d7034086aa8d3
MD5 ba8a74ac3714f6dbd3e4b30c08bdbb03
BLAKE2b-256 0238e80573c336616697b0e128f66acc1afde766ec3b19611fdea178995a4e31

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 6dd5452bfacbc672fe2afe87d4cfdc194d45ba6e24868813755439875ae82d25
MD5 8b6f5499b1bc7cb8fd15d5c1df9d4987
BLAKE2b-256 f0e02a44d4617bb5b7c273696adafb568c2bd48f530ea1777d1353c27107e34f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 08d8d64790008e87a385c5e8f4672a20fbb0bb4cef84cf4e30531cbe16592f35
MD5 5d3b4f9f8f94fb99dcc4014e26b0689e
BLAKE2b-256 911c649d47549f20c3da3b778dfe184429eb74d0ea76467ef5681a9bfbe94f26

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0c8b9e0be28feeabdeb2da2e7c28d791dd5a290e99720e8748cbdad2798aad1c
MD5 238fea47a74e918af817a442e7d9d1d4
BLAKE2b-256 5816e5c7c1580360cba2534f9d8faec229d9891cbc1277eb43c6f3ae787a9a50

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d52be522232df38bcc12ab354c0f98e9244cb9d630776fcfdcc095cd4b1c8d4f
MD5 fadc39f3c3e2631e991902998e645f2b
BLAKE2b-256 125ba4dc63bcfbd4a03894a8a7a72d7eecce30c3dc5994aad36964615042bc17

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.3-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 9d7761b2a6d77aaa6b0a460f9577a30cc40a30d59f363d71b928288f3f4febca
MD5 9229d3f7cc898a6032d29876ac45523b
BLAKE2b-256 7a1a48520ecbbc533c242a71fae35b1bf9b2d4df58938fcc56292b331a21dcb9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page