Skip to main content

MLPerf Inference LoadGen python bindings

Project description

Overview {#mainpage}

Introduction

  • The LoadGen is a reusable module that efficiently and fairly measures the performance of inference systems.
  • It generates traffic for scenarios as formulated by a diverse set of experts in the MLCommons working group.
  • The scenarios emulate the workloads seen in mobile devices, autonomous vehicles, robotics, and cloud-based setups.
  • Although the LoadGen is not model or dataset aware, its strength is in its reusability with logic that is.

Integration Example and Flow

The following is an diagram of how the LoadGen can be integrated into an inference system, resembling how some of the MLPerf reference models are implemented.

  1. Benchmark knows the model, dataset, and preprocessing.
  2. Benchmark hands dataset sample IDs to LoadGen.
  3. LoadGen starts generating queries of sample IDs.
  4. Benchmark creates requests to backend.
  5. Result is post processed and forwarded to LoadGen.
  6. LoadGen outputs logs for analysis.

Useful Links

Scope of the LoadGen's Responsibilities

In Scope

  • Provide a reusable C++ library with python bindings.
  • Implement the traffic patterns of the MLPerf Inference scenarios and modes.
  • Record all traffic generated and received for later analysis and verification.
  • Summarize the results and whether performance constraints were met.
  • Target high-performance systems with efficient multi-thread friendly logging utilities.
  • Generate trust via a shared, well-tested, and community-hardened code base.

Out of Scope

The LoadGen is:

  • NOT aware of the ML model it is running against.
  • NOT aware of the data formats of the model's inputs and outputs.
  • NOT aware of how to score the accuracy of a model's outputs.
  • NOT aware of MLPerf rules regarding scenario-specific constraints.

Limitting the scope of the LoadGen in this way keeps it reusable across different models and datasets without modification. Using composition and dependency injection, the user can define their own model, datasets, and metrics.

Additionally, not hardcoding MLPerf-specific test constraints, like test duration and performance targets, allows users to use the LoadGen unmodified for custom testing and continuous integration purposes.

Submission Considerations

Upstream all local modifications

  • As a rule, no local modifications to the LoadGen's C++ library are allowed for submission.
  • Please upstream early and often to keep the playing field level.

Choose your TestSettings carefully!

  • Since the LoadGen is oblivious to the model, it can't enforce the MLPerf requirements for submission. e.g.: target percentiles and latencies.
  • For verification, the values in TestSettings are logged.
  • To help make sure your settings are spec compliant, use TestSettings::FromConfig in conjunction with the relevant config file provided with the reference models.

Responsibilities of a LoadGen User

Implement the Interfaces

  • Implement the SystemUnderTest and QuerySampleLibrary interfaces and pass them to the StartTest function.
  • Call QuerySampleComplete for every sample received by SystemUnderTest::IssueQuery.

Assess Accuracy

  • Process the mlperf_log_accuracy.json output by the LoadGen to determine the accuracy of your system.
  • For the official models, Python scripts will be provided by the MLPerf model owners for you to do this automatically.

For templates of how to do the above in detail, refer to code for the demos, tests, and reference models.

LoadGen over the Network

For reference, on a high level a submission looks like this:

The LoadGen implementation is common to all submissions, while the QSL (“Query Sample Library”) and SUT (“System Under Test”) are implemented by submitters. QSL is responsible for loading the data and includes untimed preprocessing.

A submission over the network introduces a new component “QDL” (query dispatch library) that is added to the system as presented in the following diagram:

QDL is a proxy for a load-balancer, that dispatches queries to SUT over a physical network, receives the responses and passes them back to LoadGen. It is implemented by the submitter. The interface of the QDL is the same as the API to SUT.

In scenarios using QDL, data may be compressed in QSL at the choice of the submitter in order to reduce network transmission time. Decompression is part of the timed processing in SUT. A set of approved standard compression schemes will be specified for each benchmark; additional compression schemes must be approved in advance by the Working Group.

All communication between LoadGen/QSL and SUT is via QDL, and all communication between QDL and SUT must pass over a physical network.

QDL implements the protocol to transmit queries over the network and receive responses. It also implements decompression of any response returned by the SUT, where compression of responses is allowed. Performing any part of the timed preprocessing or inference in QDL is specifically disallowed. Currently no batching is allowed in QDL, although this may be revisited in future.

The MLperf over the Network will run in Server mode and Offline mode. All LoadGen modes are expected to work as is with insignificant changes. These include running the test in performance mode, accuracy mode, find peak performance mode and compliance mode. The same applies for power measurements.

QDL details

The Query Dispatch Library is implemented by the submitter and interfaces with LoadGen using the same SUT API. All MLPerf Inference SUTs implement the mlperf::SystemUnderTest class which is defined in system_under_test.h. The QDL implements mlperf::QueryDispatchLibrary class which inherits the mlperf::SystemUnderTest class and has the same API and support all existing mlperf::SystemUnderTest methods. It has a separate header file query_dispatch_library.h. Using sut with mlperf::SystemUnderTest class in LoadGen StartTest is natively upcasting mlperf::QueryDispatchLibrary class.

QDL Query issue and response over the network

The QDL gets the queries from the LoadGen through

void IssueQuery(const std::vector<QuerySample>& samples)

The QDL dispatches the queries to the SUT over the physical media. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. Submitter implementation includes all methods required to serialize the query, load balance, drive it to the Operating system and network interface card and send to the SUT.

The QDL receives the query responses over the network from the SUT. The exact method and implementation for it are submitter specific and would not be specified at MLCommons. The submitter implementation includes all methods required to receive the network data from the Network Interface card, go through the Operating system, deserialize the query response, and provide it back to the LoadGen through query completion by:

struct QuerySampleResponse {
  ResponseId id;
  uintptr_t data;
  size_t size;
};
void QuerySamplesComplete(QuerySampleResponse* responses, 
                          size_t response_count);

QDL Additional Methods

In addition to that the QDL needs to implement the following methods that are provided by the SUT interface to the LoadGen:

const std::string& Name();

The Name function returns a known string for over the Network SUTs to identify it as over the network benchmark.

void FlushQueries();

It is not specified here how the QDL would query and configure the SUT to execute the above methods. The QDL responds to the LoadGen after receiving its own response from the SUT.

Example

Refer to LON demo for a reference example illustrating usage of Loadgen over the network.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

mlcommons_loadgen-4.1.7-cp313-cp313-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.13 Windows x86-64

mlcommons_loadgen-4.1.7-cp313-cp313-win32.whl (367.7 kB view details)

Uploaded CPython 3.13 Windows x86

mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.13 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.2 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.13 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp313-cp313-macosx_11_0_arm64.whl (554.3 kB view details)

Uploaded CPython 3.13 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp312-cp312-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

mlcommons_loadgen-4.1.7-cp312-cp312-win32.whl (367.7 kB view details)

Uploaded CPython 3.12 Windows x86

mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.1 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl (607.6 kB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp312-cp312-macosx_11_0_arm64.whl (554.4 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp311-cp311-win_amd64.whl (389.8 kB view details)

Uploaded CPython 3.11 Windows x86-64

mlcommons_loadgen-4.1.7-cp311-cp311-win32.whl (368.9 kB view details)

Uploaded CPython 3.11 Windows x86

mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.9 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl (607.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp311-cp311-macosx_11_0_arm64.whl (552.7 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp310-cp310-win_amd64.whl (389.3 kB view details)

Uploaded CPython 3.10 Windows x86-64

mlcommons_loadgen-4.1.7-cp310-cp310-win32.whl (368.2 kB view details)

Uploaded CPython 3.10 Windows x86

mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl (606.4 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp310-cp310-macosx_11_0_arm64.whl (551.3 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp39-cp39-win_amd64.whl (383.0 kB view details)

Uploaded CPython 3.9 Windows x86-64

mlcommons_loadgen-4.1.7-cp39-cp39-win32.whl (368.5 kB view details)

Uploaded CPython 3.9 Windows x86

mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (583.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl (606.5 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp39-cp39-macosx_11_0_arm64.whl (551.4 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp38-cp38-win_amd64.whl (389.2 kB view details)

Uploaded CPython 3.8 Windows x86-64

mlcommons_loadgen-4.1.7-cp38-cp38-win32.whl (368.3 kB view details)

Uploaded CPython 3.8 Windows x86

mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_i686.whl (1.7 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (582.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl (605.9 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ i686

mlcommons_loadgen-4.1.7-cp38-cp38-macosx_11_0_arm64.whl (551.1 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

mlcommons_loadgen-4.1.7-cp37-cp37m-win_amd64.whl (360.3 kB view details)

Uploaded CPython 3.7m Windows x86-64

mlcommons_loadgen-4.1.7-cp37-cp37m-win32.whl (340.7 kB view details)

Uploaded CPython 3.7m Windows x86

mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_x86_64.whl (1.5 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ x86-64

mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_i686.whl (1.6 MB view details)

Uploaded CPython 3.7m musllinux: musl 1.2+ i686

mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (555.0 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl (579.7 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ i686

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-win_amd64.whl
Algorithm Hash digest
SHA256 ac2566629d0599f2d32cb7198566fbb21ce0c55547dc7e8f3db21f57ac60f4c1
MD5 1d66d98bc3896f1483cd767fb82dbfff
BLAKE2b-256 41d5242e6271a1d7cbcd285aa2f619221026ad2137acc580399f5d17de025e8d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-win32.whl
Algorithm Hash digest
SHA256 041ffc466514209368a05702d6d692ceec9ba49945f5b927f5e2728c104c1b33
MD5 ca67eecfd56b39b6946fbfc7d7f4a076
BLAKE2b-256 64f55b112da9e7256a0417bd54d1c27754392a015a5596394f47cb2f370ba3d4

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a5b0cf00268db1f122bbe5b25538918ef74366632bc8662c8db5a5bd756399b5
MD5 3370f3027467ba8fd2394ed2a13ec5be
BLAKE2b-256 40fde48dc6f30ab5431b3a7ad27b41f2edc9728543e2bb5103ba310eec92e351

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 7ce003893ddb15a5f985379f3418a66c265378ac7f1563031552ba16ac35e77b
MD5 9bde8f90a4a9b67e9fcd9515eea2bd8b
BLAKE2b-256 f4d2567719c1162344890fd10499d02bb21a0fc0ef9d29e2494c6a030ec6afd0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 10bf8f1dc23958c80c9b97110260c1b2aa78fd51ad53c9786560efd9dcf79915
MD5 cc247f3917629986e912e7eed58f8791
BLAKE2b-256 ee56e927d095883bc49721c2866c4227178a844d2d1992e7cfd98531005233a8

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 df2b98b3da5eee7685082ac63b6603156b64b5a62f22d54e892de4f7eba39d03
MD5 349769aadd87efe0ec910d22ce3b7f43
BLAKE2b-256 8ebd8efd3bd7883649de1a3a56b7a32cdbf306a27639e12d5e04613f912f6e86

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp313-cp313-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp313-cp313-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a3e626da8b342910910466180f9452e9ed17342027b11bdbab579f929faa1fd6
MD5 08125b49bc13de00f054f567a6354b31
BLAKE2b-256 5d4a69075d9e5f37b7a91c9b168d3d2a8f17f8f8964f7ee0325feda364ff784e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 6065a47421e3eb7bd8fc7ca494e5c90db63dadf85ccc2189d650acf0cb4bdc13
MD5 3225c7908fd1107cfedb06941debe3fa
BLAKE2b-256 c52f4d87de6bbd7e4c755bf2974e7ed566b157c33a3e658592e5782a8603bdaf

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 51eb93acbb21768e63b72f92980c3487a99565d3080ef59b8805e68b0e3efc91
MD5 2921252526392e496348e58718a14146
BLAKE2b-256 62c4ba44e4e82688e18d06c8b95b8eaa33a7b2ffd8dc8b33a96cb0d3d099f24f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 5034c8f21451c32cdaea846edcec0f863e1f8041a8b3163fa92512dd1005615b
MD5 49b14b1ae1ed1daa01eaba90da732133
BLAKE2b-256 557cba7e16ffc5bed77a533101360b29e28e8b523232a04fae9b642c7aaf1f1c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c99f358d1fa9e5dd1f60905de6caf882820d918d645c5b69cefc555e7f481676
MD5 ed93791c402920e0cc4dabd411a24630
BLAKE2b-256 9eaa04e7d68e095c01e6c0ef8d9026f4ea7fb5140bc447197a445794eb431077

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4dff90b6791c209d720ed95fe03f4165a4b0b2bd458ce3066e262bc257f7442d
MD5 b1b84dad43755f987c47130baf78270a
BLAKE2b-256 1fe3a8005042d696b3ca620f01d200dd0f8d90309adaf80396bea5367052c351

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 80719c0d686ae9bbf77a4bd401ba2c51220b685f58cdfd2b486cf080963936df
MD5 18fd476ddb1c114add29781ae5aa3552
BLAKE2b-256 ef5fd74ca71143740f159c80b86499ab28342e5e151d3d42c13f13a844e9dbdc

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddcbf8d7939860326e45afdd4ae29c5be566b20e633c2ed747250cc2df148249
MD5 c535588249c23120193b8d29bc32faff
BLAKE2b-256 5260d22b4854806a2b6a53b7fd70df59622bc3aaf1af137494c80ab3a8924811

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6fc78b4c67338d934c55d53dbce71d83ce96a00e602a2665999e573bd8158392
MD5 fc60871c329b4769ea4b7f205ad5b9ee
BLAKE2b-256 9dbb2bd1ea13d0545568885088663027be6173be5f8239954d8033153c8b3b9c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 14011693c1388561b3331209111dea19b9d653d1b8d26ebf80ba7b660e209097
MD5 66411fb40c0af7f5b15b845d0effcee2
BLAKE2b-256 fc2c109217e89af378e6337904abd75228cb5751d03aa1ed0ddb544df846863c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 a085b4ae390e738e244dffb0f0f66bbd39822c708c2d91919cd4f568efc1fda4
MD5 c8e1dd842fb250c5f9bbd18f874acbd5
BLAKE2b-256 74dd7ec8964ad546b78d6bb1c95936fb964d5a9b26a3173938e3979a8a9d4514

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 5de0e982b1551fda0639abfe83a80fb0c09e13b52b603a851a377de3cc65eb5b
MD5 e38bd707159ff33b285a0bbe93c419dc
BLAKE2b-256 c243aeb8be95c89d4188b27cb2b2135a9e0b700672df00baef6eee90aad26d27

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 697add6abc169f7f33fddeb06f6b496845b9ab8e9bdfdf45e0825d89623d0a49
MD5 5c79d7574abc258a8f7cd7e52d90095d
BLAKE2b-256 32df30e6708a265d461aeea5b56bece8a03a821bc017aceed50675d1b3ceb7b0

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 be899a2e2a4a696c74d43b036cfb0dfb173cb0b982968e0f7230fafedc7e9c6e
MD5 c7cf75306077babe12de2be58235e85b
BLAKE2b-256 68e1671acf47aad5e31abdc52d45fef8c20664ef0866fe19441cdf3695de8b9d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a51c21840cd13b73c76e833f4686292c15569e77df8e7b109fd6e49699620d68
MD5 283a8c346ad971b89290029c0a44752d
BLAKE2b-256 0b81b59cc61da994d5c1eea2523bad59579c95ea8c06ff0a40979e2191bc6507

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 0f7acb4d53849e1e3dc7ea2735d273bbd60792ee6542ec605697d097f1fb4b49
MD5 57ceb8d4be6da90bcaf87c7c0442362a
BLAKE2b-256 177b8fb699fc67f438656503d4b63eb9f3cad5ffe66b2b59aab19f7f876c2cc2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 43bfcb73be7266ca4265cbe1f6bad16ad40f1b82c5af4c84a6a2650788ad76da
MD5 4f9ee645b5a2756460b984c080c6bdc8
BLAKE2b-256 372ff9ea7cba8a67e9227115a404b9c20a8e11c79f117b168665f966f035e676

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 b47b487a8808467a66476e37e8d7fccf9c0a8b17b7582900ce19b2b131e7b869
MD5 813349e6c643338c57516244261f62d1
BLAKE2b-256 46590b943d72841dd0de334941dedfe17d4de1e3aa8816f668fd92c126d0dbbe

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 76533d92649caff725cfd176048b0825bfc99a3ff7b9ff2ac67b01e91b694e71
MD5 f6413a5ce3d7080dba0ace36f0fc1d27
BLAKE2b-256 7c076bf696a8b9334dba4eba5de199d03ed4a6e3900e252e9da8dd050e8da905

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 9b8cdb412bb495830f4e9ed2bf61a1b5db6e2328310b0625aa9b3cc323567ea9
MD5 9045b99a66e0f52331f4ac4cb8885385
BLAKE2b-256 03789332a25cfd5cef8bf73c4ada50c2a68121d3c88bb3dc0b5687103d3ffc7a

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 82c156c300906be11397eaaa2d7a2f1dae84c5eb0f7520d16d78bd9ad135e27f
MD5 d08ff5b39481632072191c75b82ea3cd
BLAKE2b-256 5c92f049a070d1b40a16983f221a47fa69fd6bd38ed13eaab82b6011f8e1c7dc

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 3fb2841ea1a7c81b65a3093776a6b73955d82c973d673cc749fdf240fdf9c5a4
MD5 d0588b651a6248469487b704978af43b
BLAKE2b-256 6bc078cb99f22567892babab4e648ae4b2f2e30e0783849680fdb56f8c7ed888

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 73afb9a87ef25e33675d036c39914cf1f6c3231bfd4f1f29e206b09630147af4
MD5 d580d41f3e2bf1e5a23e77054fcb1c46
BLAKE2b-256 6ca8bfd3a2c48e8740858355c1ea80683ee3af5aeb21d84aedfa3827aa0be173

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 20cb8b29bc92101a39a88c00bd0a9f2db89126a784c92038ebe775d5f415a7b4
MD5 f6a7e92829fe256b29af9f6f83ef10ac
BLAKE2b-256 8c1f6f756786c8dc5fd27cdf14e6d178624448d1fadedbf72f15ea1bf4d8ecff

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 deb5df587b5304caea5518caaf0488cd787a9b182571e0a3422cd4a2b25a65be
MD5 ec3c8e2a6636c7537d7de393c89751db
BLAKE2b-256 45ffe38783503b40e83eb4d003a4cd4c098215cf6d2a102516e166577287453b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 c7084635269e2c80ffe6a1b790a6d02bdf4fe0f63e946c82fb849880b6667576
MD5 d4c34369775f184ead985ccb2e3fec94
BLAKE2b-256 ede0f6cfe1dd32ff2fec6b80a90c77f53f784b5abb1a29d99640ba0fcceef79c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 30149fe39a0c842952ddb557837c7897fe9a21efbb075ddc9e4dc61b96effbb6
MD5 ae559394c9ca74a22755c59065379c08
BLAKE2b-256 4d5d8bfa71168af6fd25f4cdd7ba35da4d0676552547a3a2a5d879be78e2e69c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 504c8e4947629763e206fd5f72cceff5bdbb13eb495b0b1a404e163b6f48017b
MD5 8894e5caaad05d90d6692f5921e3f6d4
BLAKE2b-256 479daf2978056fce0eedde88ff9416b3794a71d3dcb1a171bb8f87aced383d6e

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ba3dc12e90ede58fb8a143c7c5c5dd451aca5e822d6c730432339334d6956706
MD5 0d665f6ebded2fa9931e805504da5762
BLAKE2b-256 942cd4f18b1720499de698cec9ec4936c5f3f4cca12cd8f65e2531f68366c49c

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 d1a2ddf109e0d10fefe72cc027e97f2cb811ebf230a86ba2c192cdeb1c396a83
MD5 e5af3578abf339202731e831f06652c8
BLAKE2b-256 8f37030b2abb80623b7c76eb1de5f7cc7c1eb5adf343bba61d806bf8f92d96b2

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 bee951704d52ef9878931e89b90fb30da6e6736915cfe6589504442fac8189b2
MD5 c5d2e7c35ca8e66de6fa5d6aa597b241
BLAKE2b-256 d3190c129e22781524f97e68b2cdcfcd61c14d9d6c28cceb06857beff58c0c5f

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 c9d0a051a07d0e046531da214913c267bcd55b0bc4299547e19d6d37f1c3c8e0
MD5 f18bd4e9b541ba87f726ae3ad58a3afc
BLAKE2b-256 67a2d45ab3c24ae1dee8b74ed9271870e6f5f292379c8fd6fa353d23564a4d42

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 ef40359bd0def08af4f43060af218eda459147d629cece301ad05f220bc8daa4
MD5 402acf8d9ddd47df27741bbcc0cc4d37
BLAKE2b-256 3a22eef8bb51764bce3f3d1ee6330b74bdeb2829f78fd02645a421db63e65969

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 5b56b941ec32e11ab0d671cbf19e56af5b0d0e34f1f89ab4f311539c393f889e
MD5 c6b887ce5796c84e126221042e901296
BLAKE2b-256 5c007e7507a84b8fa5cc5f702aa05851b404cc2af93f060e7586e1b4d36430bf

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 8979188cea157ce5634bb608e8f5967ceef28d50a0fe0ea32a412b28f4097a79
MD5 ca9fd7954e4c554aac48f04c5ceb19f1
BLAKE2b-256 d0da0d1c0147f472432116d0ff7732b70ddd0200294675c7bd2b2a5b9ceaf36d

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 4371f0861f7dae0c5ff8c520709b28451e18cd93c8365c6a25305ce9189e4796
MD5 b303c13e720f9b7d69a43fd13f014d2d
BLAKE2b-256 fa28c274e292c6c1c9c4f429b2a9f423ec087ca6a7d5d9abb7646f9db4edfe90

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 f14ffd6494a6537f14e6893150af450595ceb60afea929edc485e1c02c3891fe
MD5 7042bd947b6fff46af5a87fc92d16668
BLAKE2b-256 58edc8e78c6a2d2df0c85ed2139fe91adfbc22d9252780b42a58bf2b25cba359

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-win32.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 5bfecdd2bb8bdc224dd095fee812fa87dad4d0b42931388499e80b680544a81e
MD5 ae496f386b8366a61be0c1e666720a46
BLAKE2b-256 fef1686804bb545619544e9e3afd6859baf26127b7ab88fff9524b16a44fdc5b

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_x86_64.whl
Algorithm Hash digest
SHA256 71460fda1ff37c534a5b25af218a3369d75b016dcab8cd0baa92b75e9552ea1b
MD5 367b2ec5d1d7a8810f28d93d83be24bf
BLAKE2b-256 cb820b46d8995fab7d6800c9aea81c888ddac62208d6fe53eefbcd53f479ec73

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-musllinux_1_2_i686.whl
Algorithm Hash digest
SHA256 0a75a12b2b9636ed6e4bd7d46d62f3695c1ee3db0ea345bf47a9053157493157
MD5 f51c494f291c28675ee9a1aa7928d3dc
BLAKE2b-256 0d3633ee1228c68c43de0bd8bbdd290925b06a401956749d5df53f02e0939410

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 dd88261110b7348f7dc9c3c985d1e1329d965756a882a849d35d08d72a42dffe
MD5 f7d2bc5b9811176f2ea5f4ecbc9b225c
BLAKE2b-256 6fa62495e822783b6624c12df2eaa287e25bff82cdfc283961839c7848ae1889

See more details on using hashes here.

File details

Details for the file mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl.

File metadata

File hashes

Hashes for mlcommons_loadgen-4.1.7-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl
Algorithm Hash digest
SHA256 7c02e54e5dae13c4ee77fab626c5aeec84d946953c934349b97690b334183498
MD5 7ece927fe0dd984e227c9ab10547e834
BLAKE2b-256 8d4b1b07d2b89abff7d1797eb7b6fa9d95a1936c769344e2d484944b5432573b

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page