Skip to main content

Extends scikit-learn with a couple of new models, transformers, metrics, plotting.

Project description

Build status Build Status Windows https://circleci.com/gh/sdpython/mlinsights/tree/master.svg?style=svg https://dev.azure.com/xavierdupre3/mlinsights/_apis/build/status/sdpython.mlinsights https://badge.fury.io/py/mlinsights.svg MIT License Requirements Status https://codecov.io/github/sdpython/mlinsights/coverage.svg?branch=master GitHub Issues Notebook Coverage

mlinsights - extensions to scikit-learn

mlinsights extends scikit-learn with a couple of new models, transformers, metrics, plotting. It provides new trainers such as QuantileLinearRegression which trains a linear regression with L1 norm non-linear correlation based on decision trees, or QuantileMLPRegressor a modification of scikit-learn’s MLPRegressor which trains a multi-layer perceptron with L1 norm. It also explores PredictableTSNE which trains a supervized model to replicate t-SNE results or a PiecewiseRegression which partitions the data before fitting a model on each bucket.

Function pipeline2dot converts a pipeline into a graph:

from mlinsights.plotting import pipeline2dot
dot = pipeline2dot(clf, df)
https://github.com/sdpython/mlinsights/raw/master/_doc/pipeline.png

History

current - 2019-07-11 - 0.00Mb

  • 61: Fix bug in pipeline2dot when keyword “passthrough is used” (2019-07-11)

  • 60: Fix visualisation of pipeline which contains string “passthrough” (2019-07-09)

  • 58: Explores a way to compute recommandations without training (2019-06-05)

0.2.288 - 2019-05-28 - 0.66Mb

  • 56: Fixes #55, explore caching for scikit-learn pipeline (2019-05-22)

  • 55: Explore caching for gridsearchCV (2019-05-22)

  • 53: implements a function to extract intermediate model outputs within a pipeline (2019-05-07)

  • 51: Implements a tfidfvectorizer which keeps more information about n-grams (2019-04-26)

  • 46: implements a way to determine close leaves in a decision tree (2019-04-01)

  • 44: implements a model which produces confidence intervals based on bootstrapping (2019-03-29)

  • 40: implements a custom criterion for a decision tree optimizing for a linear regression (2019-03-28)

  • 39: implements a custom criterion for decision tree (2019-03-26)

  • 41: implements a direct call to a lapack function from cython (2019-03-25)

  • 38: better implementation of a regression criterion (2019-03-25)

0.1.199 - 2019-03-05 - 0.05Mb

  • 37: implements interaction_only for polynomial features (2019-02-26)

  • 36: add parameter include_bias to extended features (2019-02-25)

  • 34: rename PiecewiseLinearRegression into PiecewiseRegression (2019-02-23)

  • 33: implement the piecewise classifier (2019-02-23)

  • 31: uses joblib for piecewise linear regression (2019-02-23)

  • 30: explore transpose matrix before computing the polynomial features (2019-02-17)

  • 29: explore different implementation of polynomialfeatures (2019-02-15)

  • 28: implement PiecewiseLinearRegression (2019-02-10)

  • 27: implement TransferTransformer (2019-02-04)

  • 26: add function to convert a scikit-learn pipeline into a graph (2019-02-01)

  • 25: implements kind of trainable t-SNE (2019-01-31)

  • 6: use keras and pytorch (2019-01-03)

  • 22: modifies plot gallery to impose coordinates (2018-11-10)

  • 20: implements a QuantileMLPRegressor (quantile regression with MLP) (2018-10-22)

  • 19: fix issues introduced with changes in keras 2.2.4 (2018-10-06)

  • 18: remove warning from scikit-learn about cloning (2018-09-16)

  • 16: move CI to python 3.7 (2018-08-21)

  • 17: replace as_matrix by values (pandas deprecated warning) (2018-07-29)

  • 14: add transform to convert a learner into a transform (sometimes called a featurizer) (2018-06-19)

  • 13: add transform to do model stacking (2018-06-19)

  • 8: move items from papierstat (2018-06-19)

  • 12: fix bug in quantile regression: wrong weight for linear regression (2018-06-16)

  • 11: specifying quantile (2018-06-16)

  • 4: add function to compute non linear correlations (2018-06-16)

  • 10: implements combination between logistic regression and k-means (2018-05-27)

  • 9: move items from ensae_teaching_cs (2018-05-08)

  • 7: add quantile regression (2018-05-07)

  • 5: replace flake8 by code style (2018-04-14)

  • 1: change background for cells in notebooks converted into rst then in html, highlight-ipython3 (2018-01-05)

  • 2: save features and metadatas for the search engine and retrieves them (2017-12-03)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mlinsights-0.2.312.tar.gz (695.2 kB view details)

Uploaded Source

Built Distribution

mlinsights-0.2.312-cp37-cp37m-win_amd64.whl (450.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

File details

Details for the file mlinsights-0.2.312.tar.gz.

File metadata

  • Download URL: mlinsights-0.2.312.tar.gz
  • Upload date:
  • Size: 695.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: Python-urllib/3.7

File hashes

Hashes for mlinsights-0.2.312.tar.gz
Algorithm Hash digest
SHA256 1621747663dd03a7f78b96b7660b14f8b92617797d702d6c172efd96271ea10b
MD5 d53f8fe45362470ff35927e05a758a44
BLAKE2b-256 84d33d88d335db14b9108fdcd411d4211c56f9c8a532dbe628f8b2e91eec8ba1

See more details on using hashes here.

File details

Details for the file mlinsights-0.2.312-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for mlinsights-0.2.312-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 1cb073fcd0d7a734e717fae1cda54c5430cfc5e439ceadbe2a811a2ad6c8b3df
MD5 8787c9e13657e091eb844bdaa3d91fc4
BLAKE2b-256 6faa0455db5c7f76eda020c0ed26637242b4e28f3b711118fc8970877b008776

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page