Skip to main content

Logging Utility for ML Experiments

Project description

CircleCI PyPI - License PyPI - Python Version Code style: black

ml-logger

Logging utility for ML experiments

Why

People use different tools for logging experimental results - Tensorboard, Wandb etc to name a few. Working with different collaborators, I will have to switch my logging tool with each new project. So I made this simple tool that provides a common interface to logging results to different loggers.

Installation

  • pip install "mllogger[all]"

If you want to use only the filesystem logger, use pip install "mllogger"

Install from source

  • git clone git@github.com:shagunsodhani/ml-logger.git
  • cd ml-logger
  • pip install ".[all]"

Alternatively, pip install "git+https://git@github.com/shagunsodhani/ml-logger.git@master#egg=ml_logger[all]"

If you want to use only the filesystem logger, use pip install . or pip install "git+https://git@github.com/shagunsodhani/ml-logger.git@master#egg=ml_logger".

Documentation

https://shagunsodhani.github.io/ml-logger

Use

  • Make a logbook_config:

    from ml_logger import logbook as ml_logbook
    logbook_config = ml_logbook.make_config(
        logger_dir = <path to write logs>,
        wandb_config = <wandb config or None>,
        tensorboard_config = <tensorboard config or None>,
        mlflow_config = <mlflow config or None>)
    

    The API for make_config can be accessed here.

  • Make a LogBook instance:

    logbook = ml_logbook.LogBook(config = logbook_config)
    
  • Use the logbook instance:

    log = {
        "epoch": 1,
        "loss": 0.1,
        "accuracy": 0.2
    }
    logbook.write_metric_log(log)
    

    The API for write_metric_log can be accessed here.

Note

  • If you are writing to wandb, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the wandb_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to mlflow, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the mlflow_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to tensorboard, the log must have a key called main_tag or tag which acts as the data Identifier and another key called global_step. These keys are described here. If your log already captures these values but as different key (say mode for main_tag and epoch for global_step), you can pass the tensorboard_key_map argument (set as {mode: main_tag, epoch: global_step}). For more details, refer the documentation here.

Dev Setup

  • pip install -e ".[dev]"
  • Install pre-commit hooks pre-commit install
  • The code is linted using:
    • black
    • flake8
    • mypy
  • Tests can be run locally using nox

Acknowledgements

  • Config for circleci, pre-commit, mypy etc are borrowed/modified from Hydra

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllogger-0.6.1.tar.gz (16.7 kB view details)

Uploaded Source

Built Distribution

mllogger-0.6.1-py3-none-any.whl (24.1 kB view details)

Uploaded Python 3

File details

Details for the file mllogger-0.6.1.tar.gz.

File metadata

  • Download URL: mllogger-0.6.1.tar.gz
  • Upload date:
  • Size: 16.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for mllogger-0.6.1.tar.gz
Algorithm Hash digest
SHA256 766c578ea8f8047135dd07b02d94732d78063bfb4a56efd2a4386911e825b0d2
MD5 c587326a410d95a6aab383c974c87c06
BLAKE2b-256 efe12577495cad63414dea0c62ccc6a7151237254ec17b2e276f6b9103b68a89

See more details on using hashes here.

File details

Details for the file mllogger-0.6.1-py3-none-any.whl.

File metadata

  • Download URL: mllogger-0.6.1-py3-none-any.whl
  • Upload date:
  • Size: 24.1 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.24.0 setuptools/49.2.0.post20200714 requests-toolbelt/0.9.1 tqdm/4.48.0 CPython/3.7.7

File hashes

Hashes for mllogger-0.6.1-py3-none-any.whl
Algorithm Hash digest
SHA256 9f26c733777aed0a5b38e2144239527ea866ede222b5dc44292714b6bffae31a
MD5 998ed53da78abeba1d81c408b39f02f9
BLAKE2b-256 b714d7ab8a427a9d3b4fcb8064d536426182a57e091c32800dfcab991bf856a1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page