Skip to main content

Logging Utility for ML Experiments

Project description

CircleCI PyPI - License PyPI - Python Version Code style: black

ml-logger

Logging utility for ML experiments

Why

People use different tools for logging experimental results - Tensorboard, Wandb etc to name a few. Working with different collaborators, I will have to switch my logging tool with each new project. So I made this simple tool that provides a common interface to logging results to different loggers.

Installation

  • pip install "mllogger[all]"

If you want to use only the filesystem logger, use pip install "mllogger"

Install from source

  • git clone git@github.com:shagunsodhani/ml-logger.git
  • cd ml-logger
  • pip install ".[all]"

Alternatively, pip install "git+https://git@github.com/shagunsodhani/ml-logger.git@master#egg=ml_logger[all]"

If you want to use only the filesystem logger, use pip install . or pip install "git+https://git@github.com/shagunsodhani/ml-logger.git@master#egg=ml_logger".

Documentation

https://shagunsodhani.github.io/ml-logger

Use

  • Make a logbook_config:

    from ml_logger import logbook as ml_logbook
    logbook_config = ml_logbook.make_config(
        logger_dir = <path to write logs>,
        wandb_config = <wandb config or None>,
        tensorboard_config = <tensorboard config or None>,
        mlflow_config = <mlflow config or None>)
    

    The API for make_config can be accessed here.

  • Make a LogBook instance:

    logbook = ml_logbook.LogBook(config = logbook_config)
    
  • Use the logbook instance:

    log = {
        "epoch": 1,
        "loss": 0.1,
        "accuracy": 0.2
    }
    logbook.write_metric_log(log)
    

    The API for write_metric_log can be accessed here.

Note

  • If you are writing to wandb, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the wandb_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to mlflow, the log must have a key called step. If your log already captures the step but as a different key (say epoch), you can pass the mlflow_key_map argument (set as {epoch: step}). For more details, refer the documentation here.

  • If you are writing to tensorboard, the log must have a key called main_tag or tag which acts as the data Identifier and another key called global_step. These keys are described here. If your log already captures these values but as different key (say mode for main_tag and epoch for global_step), you can pass the tensorboard_key_map argument (set as {mode: main_tag, epoch: global_step}). For more details, refer the documentation here.

Dev Setup

  • pip install -e ".[dev]"
  • Install pre-commit hooks pre-commit install
  • The code is linted using:
    • black
    • flake8
    • mypy
  • Tests can be run locally using nox

Acknowledgements

  • Config for circleci, pre-commit, mypy etc are borrowed/modified from Hydra

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

mllogger-0.6rc3.tar.gz (17.3 kB view details)

Uploaded Source

Built Distribution

mllogger-0.6rc3-py3-none-any.whl (26.5 kB view details)

Uploaded Python 3

File details

Details for the file mllogger-0.6rc3.tar.gz.

File metadata

  • Download URL: mllogger-0.6rc3.tar.gz
  • Upload date:
  • Size: 17.3 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200529 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for mllogger-0.6rc3.tar.gz
Algorithm Hash digest
SHA256 054b00a7d1a174417a425053df770f1815d1e2b9cb044545bfb429a3b2bd12b3
MD5 511fdddee9ae9a13d2154bfcae304429
BLAKE2b-256 195eb7511fd92c56df5ee9e08d0cbb60e3d51c4fcf68068db369ae17c4db6f15

See more details on using hashes here.

File details

Details for the file mllogger-0.6rc3-py3-none-any.whl.

File metadata

  • Download URL: mllogger-0.6rc3-py3-none-any.whl
  • Upload date:
  • Size: 26.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.1.1 pkginfo/1.5.0.1 requests/2.23.0 setuptools/47.1.1.post20200529 requests-toolbelt/0.9.1 tqdm/4.46.0 CPython/3.8.3

File hashes

Hashes for mllogger-0.6rc3-py3-none-any.whl
Algorithm Hash digest
SHA256 0136c755c31530eb54ee9152523facc0a089aba1e0c935f3d9a07872a5c02192
MD5 026d99dbd8c1ffbf0b9c5ba376cce123
BLAKE2b-256 25de1aac44cc2ecd764417f1dd7c5e4cdbd31230937396586e42fb03f7531dd6

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page