Predict splicing variant effect from VCF
Project description
# mmsplice
[![pypi](https://img.shields.io/pypi/v/mmsplice.svg)](https://pypi-hypernode.com/pypi/mmsplice)
[![travis](https://img.shields.io/travis/s6juncheng/mmsplice.svg)](https://travis-ci.org/s6juncheng/mmsplice)
Predict splicing variant effect from VCF
* Free software: MIT license
## Usage example
------
NOTE: make sure you split and left-normalize the input VCF file.
Check notebooks/example.ipynb
```python
# Import
from mmsplice.vcf_dataloader import SplicingVCFDataloader
from mmsplice import MMSplice, predict_all_table
from mmsplice.utils import max_varEff
# example files
gtf = 'tests/data/test.gtf'
vcf = 'tests/data/test.vcf.gz'
fasta = 'tests/data/hg19.nochr.chr17.fa'
gtfIntervalTree = '../tests/data/test.pkl' # pickle exon interval Tree
# dataloader to load variants from vcf
dl = SplicingVCFDataloader(gtf,
fasta,
vcf,
out_file=gtfIntervalTree,
split_seq=False)
# Specify model
model = MMSplice(
exon_cut_l=0,
exon_cut_r=0,
acceptor_intron_cut=6,
donor_intron_cut=6,
acceptor_intron_len=50,
acceptor_exon_len=3,
donor_exon_len=5,
donor_intron_len=13)
# Do prediction
predictions = predict_all_table(model, dl, batch_size=1024, split_seq=False, assembly=False)
# Summerize with maximum effect size
predictionsMax = max_varEff(predictions)
```
=======
History
=======
0.1.0 (2018-07-17)
------------------
* First release on PyPI.
[![pypi](https://img.shields.io/pypi/v/mmsplice.svg)](https://pypi-hypernode.com/pypi/mmsplice)
[![travis](https://img.shields.io/travis/s6juncheng/mmsplice.svg)](https://travis-ci.org/s6juncheng/mmsplice)
Predict splicing variant effect from VCF
* Free software: MIT license
## Usage example
------
NOTE: make sure you split and left-normalize the input VCF file.
Check notebooks/example.ipynb
```python
# Import
from mmsplice.vcf_dataloader import SplicingVCFDataloader
from mmsplice import MMSplice, predict_all_table
from mmsplice.utils import max_varEff
# example files
gtf = 'tests/data/test.gtf'
vcf = 'tests/data/test.vcf.gz'
fasta = 'tests/data/hg19.nochr.chr17.fa'
gtfIntervalTree = '../tests/data/test.pkl' # pickle exon interval Tree
# dataloader to load variants from vcf
dl = SplicingVCFDataloader(gtf,
fasta,
vcf,
out_file=gtfIntervalTree,
split_seq=False)
# Specify model
model = MMSplice(
exon_cut_l=0,
exon_cut_r=0,
acceptor_intron_cut=6,
donor_intron_cut=6,
acceptor_intron_len=50,
acceptor_exon_len=3,
donor_exon_len=5,
donor_intron_len=13)
# Do prediction
predictions = predict_all_table(model, dl, batch_size=1024, split_seq=False, assembly=False)
# Summerize with maximum effect size
predictionsMax = max_varEff(predictions)
```
=======
History
=======
0.1.0 (2018-07-17)
------------------
* First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
mmsplice-0.2.2.tar.gz
(448.5 kB
view details)
File details
Details for the file mmsplice-0.2.2.tar.gz
.
File metadata
- Download URL: mmsplice-0.2.2.tar.gz
- Upload date:
- Size: 448.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.12.1 pkginfo/1.4.2 requests/2.18.4 setuptools/39.0.1 requests-toolbelt/0.8.0 tqdm/4.19.7 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 41b8f6f6df71ad50168717021755add5cbdf183d7224399ff12309a763be2813 |
|
MD5 | 57bbb810f224ec79359abbb804c57831 |
|
BLAKE2b-256 | 1c4905c5848779f9f26d3b335b6c0af201fff4896620a0696e4187e2ca0e9a59 |