MNE-Features software for extracting features from multivariate time series
Project description
This repository provides code for feature extraction with M/EEG data. The documentation of the MNE-Features module is available at: documentation.
Installation
To install the package, the simplest way is to use pip to get the latest release:
$ pip install mne-features
Or if you prefer conda:
$ conda install --channel=conda-forge mne-features
Or to get the latest version of the code:
$ pip install git+https://github.com/mne-tools/mne-features.git#egg=mne_features
Dependencies
These are the dependencies to use MNE-Features:
numpy (>=1.17)
matplotlib (>=1.5)
scipy (>=1.0)
numba (>=0.46.0)
llvmlite (>=0.30)
scikit-learn (>=0.21)
mne (>=0.18.2)
PyWavelets (>=0.5.2)
pandas (>=0.25)
Cite
If you use this code in your project, please cite:
Jean-Baptiste SCHIRATTI, Jean-Eudes LE DOUGET, Michel LE VAN QUYEN, Slim ESSID, Alexandre GRAMFORT, "An ensemble learning approach to detect epileptic seizures from long intracranial EEG recordings" Proc. IEEE ICASSP Conf. 2018
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file mne-features-0.3.tar.gz
.
File metadata
- Download URL: mne-features-0.3.tar.gz
- Upload date:
- Size: 40.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | cae131cf167d092ce37fabda2ed0d7c0d083f02f58fffc15ba1526aca1e393aa |
|
MD5 | 918dec4dddeb7bf1b859ccb80c63fdd2 |
|
BLAKE2b-256 | f7ef6b9f2e2de33e0cdd6bf8a2dc40657d74c2ba056e75a2347f4519ed5777f3 |
File details
Details for the file mne_features-0.3-py3-none-any.whl
.
File metadata
- Download URL: mne_features-0.3-py3-none-any.whl
- Upload date:
- Size: 26.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.11.5
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | eeeeb5bf0c1bf86d901c1af4b56290a0d25ce407d8d3f3b84f075464a2e3f832 |
|
MD5 | d0bfcad5db48ac4fcc86cddd1bdf6afa |
|
BLAKE2b-256 | d95f3a7e0cc6c676f4b4f3d10377a21314dec5b7ed318960654489520fc94f2e |