Skip to main content

Machine learning lib.

Project description

Logo

modelkit

Python framework for production ML systems.


modelkit is a minimalist yet powerful MLOps library for Python, built for people who want to deploy ML models to production.

It packs several features which make your go-to-production journey a breeze, and ensures that the same exact code will run in production, on your machine, or on data processing pipelines.

Quickstart

modelkit provides a straightforward and consistent way to wrap your prediction code in a Model class:

from modelkit import Model

class MyModel(Model):
    def _predict(self, item):
        # This is where your prediction logic goes
        ...
        return result

Be sure to check out our tutorials in the documentation.

Features

Wrapping your prediction code in modelkit instantly gives acces to all features:

  • fast Model predictions can be batched for speed (you define the batching logic) with minimal overhead.
  • composable Models can depend on other models, and evaluate them however you need to
  • extensible Models can rely on arbitrary supporting configurations files called assets hosted on local or cloud object stores
  • type-safe Models' inputs and outputs can be validated by pydantic, you get type annotations for your predictions and can catch errors with static type analysis tools during development.
  • async Models support async and sync prediction functions. modelkit supports calling async code from sync code so you don't have to suffer from partially async code.
  • testable Models carry their own unit test cases, and unit testing fixtures are available for pytest
  • fast to deploy Models can be served in a single CLI call using fastapi

In addition, you will find that modelkit is:

  • simple Use pip to install modelkit, it is just a Python library.
  • robust Follow software development best practices: version and test all your configurations and artifacts.
  • customizable Go beyond off-the-shelf models: custom processing, heuristics, business logic, different frameworks, etc.
  • framework agnostic Bring your own framework to the table, and use whatever code or library you want. modelkit is not opinionated about how you build or train your models.
  • organized Version and share you ML library and artifacts with others, as a Python package or as a service. Let others use and evaluate your models!
  • fast to code Just write the prediction logic and that's it. No cumbersome pre or postprocessing logic, branching options, etc... The boilerplate code is minimal and sensible.

Installation

Install with pip:

pip install modelkit

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

modelkit-0.0.17-py3-none-any.whl (71.6 kB view details)

Uploaded Python 3

File details

Details for the file modelkit-0.0.17-py3-none-any.whl.

File metadata

  • Download URL: modelkit-0.0.17-py3-none-any.whl
  • Upload date:
  • Size: 71.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.7.12

File hashes

Hashes for modelkit-0.0.17-py3-none-any.whl
Algorithm Hash digest
SHA256 2cfbc9e42925835513577f1792844e86fe4db1d3aaef562d491d6657ce59c466
MD5 63c40f366a8b5d21daa41c60bcdbd956
BLAKE2b-256 47918ce1597a2e69d80a23d30944fb2cc64e8fdf0936388078d1c07287f4113a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page