Skip to main content

Active Learning Toolkit for Healthcare Imaging

Project description

MONAI Label

License CI Build Documentation Status PyPI version Azure DevOps tests (compact) Azure DevOps coverage codecov

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with single or multiple GPUs. Both server and client work on the same/different machine. It shares the same principles with MONAI.

MONAI Label Demo

DEMO

Features

The codebase is currently under active development.

  • Framework for developing and deploying MONAI Label Apps to train and infer AI models
  • Compositional & portable APIs for ease of integration in existing workflows
  • Customizable labelling app design for varying user expertise
  • Annotation support via 3DSlicer & OHIF
  • PACS connectivity via DICOMWeb

Installation

MONAI Label supports following OS with GPU/CUDA enabled.

To install the current release, you can simply run:

  pip install monailabel
  
  # download sample apps/dataset
  monailabel apps --download --name deepedit --output apps
  monailabel datasets --download --name Task09_Spleen --output datasets
  
  # run server
  monailabel start_server --app apps/deepedit --studies datasets/Task09_Spleen/imagesTr

If monailabel install path is not automatically determined, then you can provide explicit install path as:

monailabel apps --prefix ~/.local

For prerequisites, other installation methods (using the default GitHub branch, using Docker, etc.), please refer to the installation guide.

Once you start the MONAI Label Server, by default server will be up and serving at http://127.0.0.1:8000/. Open the serving URL in browser. It will provide you the list of Rest APIs available. For this, please make sure you use the HTTP protocol. HTTPS is not implemented.

3D Slicer

Download Preview Release from https://download.slicer.org/ and install MONAI Label plugin from Slicer Extension Manager.

Refer 3D Slicer plugin for other options to install and run MONAI Label plugin in 3D Slicer.

To avoid accidentally using an older Slicer version, you may want to uninstall any previously installed 3D Slicer package.

OHIF

MONAI Label comes with pre-built plugin for OHIF Viewer. To use OHIF Viewer, you need to provide DICOMWeb instead of FileSystem as studies when you start the server.

Please install Orthanc before using OHIF Viewer. For Ubuntu 20.x, Orthanc can be installed as apt-get install orthanc orthanc-dicomweb. However, you have to upgrade to latest version by following steps mentioned here

You can use PlastiMatch to convert NIFTI to DICOM

  # start server using DICOMWeb
  monailabel start_server --app apps\deepedit --studies http://127.0.0.1:8042/dicom-web

OHIF Viewer will be accessible at http://127.0.0.1:8000/ohif/

OHIF

NOTE: OHIF does not yet support Scribbles-based annotations and Multi-Label interaction for DeepEdit.

Contributing

For guidance on making a contribution to MONAI Label, see the contributing guidelines.

Community

Join the conversation on Twitter @ProjectMONAI or join our Slack channel.

Ask and answer questions over on MONAI Label's GitHub Discussions tab.

Links

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monailabel-weekly-0.3.dev2151.tar.gz (4.9 MB view details)

Uploaded Source

Built Distribution

monailabel_weekly-0.3.dev2151-py3-none-any.whl (5.1 MB view details)

Uploaded Python 3

File details

Details for the file monailabel-weekly-0.3.dev2151.tar.gz.

File metadata

  • Download URL: monailabel-weekly-0.3.dev2151.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for monailabel-weekly-0.3.dev2151.tar.gz
Algorithm Hash digest
SHA256 33fc748c4aa908f266f68a6106ffdde4c83385c77e6e46d2994446d78e89c0bc
MD5 00b9c6eb258aac27630e7508486e4871
BLAKE2b-256 8115446d16b0abad705a68fdc1225d86f3c49950ce5d523d47d2785bca5a2401

See more details on using hashes here.

Provenance

File details

Details for the file monailabel_weekly-0.3.dev2151-py3-none-any.whl.

File metadata

  • Download URL: monailabel_weekly-0.3.dev2151-py3-none-any.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.7.1 importlib_metadata/4.9.0 pkginfo/1.8.2 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.9.9

File hashes

Hashes for monailabel_weekly-0.3.dev2151-py3-none-any.whl
Algorithm Hash digest
SHA256 e8f8a72eb157a1db65ce2589537a963c7feb4a95eb989ac234b2f67d33ac20c7
MD5 549a70c8e406b5e04945d99df760f6fb
BLAKE2b-256 6c5d72056a9de3856ddccac1177976fce00f54898255cc06d25835e63063821e

See more details on using hashes here.

Provenance

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page