Skip to main content

Active Learning Toolkit for Healthcare Imaging

Project description

MONAI Label

License CI Build Documentation Status PyPI version Azure DevOps tests (compact) Azure DevOps coverage codecov

MONAI Label is a server-client system that facilitates interactive medical image annotation by using AI. It is an open-source and easy-to-install ecosystem that can run locally on a machine with single or multiple GPUs. Both server and client work on the same/different machine. It shares the same principles with MONAI.

MONAI Label Demo

DEMO

Features

The codebase is currently under active development.

  • Framework for developing and deploying MONAI Label Apps to train and infer AI models
  • Compositional & portable APIs for ease of integration in existing workflows
  • Customizable labelling app design for varying user expertise
  • Annotation support via 3DSlicer & OHIF
  • PACS connectivity via DICOMWeb

Installation

MONAI Label supports following OS with GPU/CUDA enabled.

To install the current release, you can simply run:

  pip install monailabel
  
  # download sample apps/dataset
  monailabel apps --download --name deepedit --output apps
  monailabel datasets --download --name Task09_Spleen --output datasets
  
  # run server
  monailabel start_server --app apps/deepedit --studies datasets/Task09_Spleen/imagesTr

If monailabel install path is not automatically determined, then you can provide explicit install path as:

monailabel apps --prefix ~/.local

For prerequisites, other installation methods (using the default GitHub branch, using Docker, etc.), please refer to the installation guide.

Once you start the MONAI Label Server, by default server will be up and serving at http://127.0.0.1:8000/. Open the serving URL in browser. It will provide you the list of Rest APIs available. For this, please make sure you use the HTTP protocol. HTTPS is not implemented.

3D Slicer

Download Preview Release from https://download.slicer.org/ and install MONAI Label plugin from Slicer Extension Manager.

Refer 3D Slicer plugin for other options to install and run MONAI Label plugin in 3D Slicer.

To avoid accidentally using an older Slicer version, you may want to uninstall any previously installed 3D Slicer package.

OHIF

MONAI Label comes with pre-built plugin for OHIF Viewer. To use OHIF Viewer, you need to provide DICOMWeb instead of FileSystem as studies when you start the server.

Please install Orthanc before using OHIF Viewer. For Ubuntu 20.x, Orthanc can be installed as apt-get install orthanc orthanc-dicomweb. However, you have to upgrade to latest version by following steps mentioned here

You can use PlastiMatch to convert NIFTI to DICOM

  # start server using DICOMWeb
  monailabel start_server --app apps\deepedit --studies http://127.0.0.1:8042/dicom-web

OHIF Viewer will be accessible at http://127.0.0.1:8000/ohif/

OHIF

NOTE: OHIF does not yet support Scribbles-based annotations and Multi-Label interaction for DeepEdit.

Contributing

For guidance on making a contribution to MONAI Label, see the contributing guidelines.

Community

Join the conversation on Twitter @ProjectMONAI or join our Slack channel.

Ask and answer questions over on MONAI Label's GitHub Discussions tab.

Links

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

monailabel-weekly-0.4.dev2206.tar.gz (4.9 MB view details)

Uploaded Source

Built Distribution

monailabel_weekly-0.4.dev2206-py3-none-any.whl (5.1 MB view details)

Uploaded Python 3

File details

Details for the file monailabel-weekly-0.4.dev2206.tar.gz.

File metadata

  • Download URL: monailabel-weekly-0.4.dev2206.tar.gz
  • Upload date:
  • Size: 4.9 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for monailabel-weekly-0.4.dev2206.tar.gz
Algorithm Hash digest
SHA256 146cfe7d6e31fd009e9e2b65f0322e7cdb6f675a4ee0520c91801f4421eb5c0b
MD5 bbe5cd5a616338727a30c72897bf5771
BLAKE2b-256 7befce0c2b4825ca9bf16fef1f86654b72fa7c8d11bf761b3e488faa3dad36f7

See more details on using hashes here.

File details

Details for the file monailabel_weekly-0.4.dev2206-py3-none-any.whl.

File metadata

  • Download URL: monailabel_weekly-0.4.dev2206-py3-none-any.whl
  • Upload date:
  • Size: 5.1 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.8.2 readme-renderer/32.0 requests/2.27.1 requests-toolbelt/0.9.1 urllib3/1.26.8 tqdm/4.62.3 importlib-metadata/4.10.1 keyring/23.5.0 rfc3986/2.0.0 colorama/0.4.4 CPython/3.9.10

File hashes

Hashes for monailabel_weekly-0.4.dev2206-py3-none-any.whl
Algorithm Hash digest
SHA256 f1d4034a9b61f246132bab4bf546b174825491e5bada1dd0386d2d1661328884
MD5 d0590b014eb14fd95ff7080a078564d1
BLAKE2b-256 9fd8c98e9625b362ef122342bc64d5ecb85270f1d77a43c452c703b7b920b413

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page